searching the database
Your data matches 462 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001186
(load all 63 compositions to match this statistic)
(load all 63 compositions to match this statistic)
St001186: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> 0
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> 0
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> 0
Description
Number of simple modules with grade at least 3 in the corresponding Nakayama algebra.
Matching statistic: St000660
(load all 78 compositions to match this statistic)
(load all 78 compositions to match this statistic)
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St000660: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000660: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,0]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
Description
The number of rises of length at least 3 of a Dyck path.
The number of Dyck paths without such rises are counted by the Motzkin numbers [1].
Matching statistic: St000779
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
St000779: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00067: Permutations —Foata bijection⟶ Permutations
St000779: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [2,1] => [2,1] => 0
[1,1,0,0]
=> [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [2,3,1] => [2,3,1] => 1
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => 0
[1,1,0,0,1,0]
=> [1,3,2] => [3,1,2] => 0
[1,1,0,1,0,0]
=> [3,1,2] => [1,3,2] => 0
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [2,3,4,1] => 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [2,3,1,4] => 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [4,2,1,3] => 0
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [2,1,4,3] => 0
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => 0
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [3,1,4,2] => 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [3,1,2,4] => 0
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [3,4,1,2] => 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [1,3,4,2] => 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [1,3,2,4] => 0
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [4,1,2,3] => 0
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,2,3] => 0
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,2,4,3] => 0
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 0
Description
The tier of a permutation.
This is the number of elements $i$ such that $[i+1,k,i]$ is an occurrence of the pattern $[2,3,1]$. For example, $[3,5,6,1,2,4]$ has tier $2$, with witnesses $[3,5,2]$ (or $[3,6,2]$) and $[5,6,4]$.
According to [1], this is the number of passes minus one needed to sort the permutation using a single stack. The generating function for this statistic appears as [[OEIS:A122890]] and [[OEIS:A158830]] in the form of triangles read by rows, see [sec. 4, 1].
Matching statistic: St001022
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001022: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001022: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> 0
[1,1,0,0]
=> [2] => [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> 0
Description
Number of simple modules with projective dimension 3 in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001266
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001266: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001266: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> 0
[1,1,0,0]
=> [2] => [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> 0
Description
The largest vector space dimension of an indecomposable non-projective module that is reflexive in the corresponding Nakayama algebra.
Matching statistic: St001394
(load all 16 compositions to match this statistic)
(load all 16 compositions to match this statistic)
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00073: Permutations —major-index to inversion-number bijection⟶ Permutations
St001394: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00073: Permutations —major-index to inversion-number bijection⟶ Permutations
St001394: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [2,1] => [2,1] => 0
[1,1,0,0]
=> [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [2,3,1] => [3,1,2] => 1
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => 0
[1,1,0,0,1,0]
=> [1,3,2] => [2,3,1] => 0
[1,1,0,1,0,0]
=> [3,1,2] => [1,3,2] => 0
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,1,2,3] => 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,1,2,4] => 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [3,2,4,1] => 0
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [1,3,4,2] => 0
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => 0
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [2,4,1,3] => 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [2,3,1,4] => 0
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [3,4,1,2] => 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [1,4,2,3] => 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [1,3,2,4] => 0
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [2,3,4,1] => 0
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [2,1,4,3] => 0
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,2,4,3] => 0
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 0
Description
The genus of a permutation.
The genus $g(\pi)$ of a permutation $\pi\in\mathfrak S_n$ is defined via the relation
$$
n+1-2g(\pi) = z(\pi) + z(\pi^{-1} \zeta ),
$$
where $\zeta = (1,2,\dots,n)$ is the long cycle and $z(\cdot)$ is the number of cycles in the permutation.
Matching statistic: St000920
(load all 16 compositions to match this statistic)
(load all 16 compositions to match this statistic)
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000920: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000920: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
Description
The logarithmic height of a Dyck path.
This is the floor of the binary logarithm of the usual height increased by one:
$$
\lfloor\log_2(1+height(D))\rfloor
$$
Matching statistic: St001503
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001503: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001503: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0]
=> [2] => [1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
Description
The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra.
Matching statistic: St000052
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St000052: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St000052: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
Description
The number of valleys of a Dyck path not on the x-axis.
That is, the number of valleys of nonminimal height. This corresponds to the number of -1's in an inclusion of Dyck paths into alternating sign matrices.
Matching statistic: St000122
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00034: Dyck paths —to binary tree: up step, left tree, down step, right tree⟶ Binary trees
St000122: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00034: Dyck paths —to binary tree: up step, left tree, down step, right tree⟶ Binary trees
St000122: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> 0
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [[[.,.],.],.]
=> 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[.,[[.,.],.]],.]
=> 0
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[.,.],[[.,.],.]]
=> 0
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [.,[[[.,.],.],.]]
=> 0
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[[[.,.],.],.],.]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[.,[.,[[.,.],.]]],.]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[.,[[[.,.],.],.]],.]
=> 0
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[[.,.],[[.,.],.]],.]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[[.,[[.,.],.]],.],.]
=> 0
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[.,.],[[[.,.],.],.]]
=> 0
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [.,[[[[.,.],.],.],.]]
=> 0
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[[[[.,.],.],.],.],.]
=> 0
Description
The number of occurrences of the contiguous pattern {{{[.,[.,[[.,.],.]]]}}} in a binary tree.
[[oeis:A086581]] counts binary trees avoiding this pattern.
The following 452 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000125The number of occurrences of the contiguous pattern [.,[[[.,.],.],. St000196The number of occurrences of the contiguous pattern [[.,.],[.,. St000223The number of nestings in the permutation. St000353The number of inner valleys of a permutation. St000360The number of occurrences of the pattern 32-1. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St000436The number of occurrences of the pattern 231 or of the pattern 321 in a permutation. St000486The number of cycles of length at least 3 of a permutation. St000538The number of even inversions of a permutation. St000594The number of occurrences of the pattern {{1,3},{2}} such that 1,2 are minimal, (1,3) are consecutive in a block. St000613The number of occurrences of the pattern {{1,3},{2}} such that 2 is minimal, 3 is maximal, (1,3) are consecutive in a block. St000632The jump number of the poset. St000647The number of big descents of a permutation. St000710The number of big deficiencies of a permutation. St000711The number of big exceedences of a permutation. St000836The number of descents of distance 2 of a permutation. St000944The 3-degree of an integer partition. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001174The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001423The number of distinct cubes in a binary word. St001513The number of nested exceedences of a permutation. St001584The area statistic between a Dyck path and its bounce path. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St001728The number of invisible descents of a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St000092The number of outer peaks of a permutation. St000201The number of leaf nodes in a binary tree. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St000396The register function (or Horton-Strahler number) of a binary tree. St000527The width of the poset. St000640The rank of the largest boolean interval in a poset. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St000862The number of parts of the shifted shape of a permutation. St000886The number of permutations with the same antidiagonal sums. St000889The number of alternating sign matrices with the same antidiagonal sums. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001359The number of permutations in the equivalence class of a permutation obtained by taking inverses of cycles. St001597The Frobenius rank of a skew partition. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001732The number of peaks visible from the left. St001859The number of factors of the Stanley symmetric function associated with a permutation. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St000628The balance of a binary word. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001420Half the length of a longest factor which is its own reverse-complement of a binary word. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001095The number of non-isomorphic posets with precisely one further covering relation. St001964The interval resolution global dimension of a poset. St001330The hat guessing number of a graph. St000454The largest eigenvalue of a graph if it is integral. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001083The number of boxed occurrences of 132 in a permutation. St001115The number of even descents of a permutation. St000181The number of connected components of the Hasse diagram for the poset. St000285The size of the preimage of the map 'to inverse des composition' from Parking functions to Integer compositions. St000455The second largest eigenvalue of a graph if it is integral. St000635The number of strictly order preserving maps of a poset into itself. St000834The number of right outer peaks of a permutation. St001490The number of connected components of a skew partition. St001890The maximum magnitude of the Möbius function of a poset. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St001176The size of a partition minus its first part. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001961The sum of the greatest common divisors of all pairs of parts. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001608The number of coloured rooted trees such that the multiplicities of colours are given by a partition. St001933The largest multiplicity of a part in an integer partition. St000842The breadth of a permutation. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001060The distinguishing index of a graph. St001846The number of elements which do not have a complement in the lattice. St000405The number of occurrences of the pattern 1324 in a permutation. St000408The number of occurrences of the pattern 4231 in a permutation. St000440The number of occurrences of the pattern 4132 or of the pattern 4231 in a permutation. St000534The number of 2-rises of a permutation. St000031The number of cycles in the cycle decomposition of a permutation. St000036The evaluation at 1 of the Kazhdan-Lusztig polynomial with parameters given by the identity and the permutation. St000153The number of adjacent cycles of a permutation. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000451The length of the longest pattern of the form k 1 2. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St000264The girth of a graph, which is not a tree. St000891The number of distinct diagonal sums of a permutation matrix. St000906The length of the shortest maximal chain in a poset. St000260The radius of a connected graph. St000478Another weight of a partition according to Alladi. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000731The number of double exceedences of a permutation. St000934The 2-degree of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001625The Möbius invariant of a lattice. St001866The nesting alignments of a signed permutation. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St000284The Plancherel distribution on integer partitions. St000456The monochromatic index of a connected graph. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000668The least common multiple of the parts of the partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000929The constant term of the character polynomial of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St001128The exponens consonantiae of a partition. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001568The smallest positive integer that does not appear twice in the partition. St000716The dimension of the irreducible representation of Sp(6) labelled by an integer partition. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001857The number of edges in the reduced word graph of a signed permutation. St000460The hook length of the last cell along the main diagonal of an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001344The neighbouring number of a permutation. St001360The number of covering relations in Young's lattice below a partition. St001378The product of the cohook lengths of the integer partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001607The number of coloured graphs such that the multiplicities of colours are given by a partition. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001722The number of minimal chains with small intervals between a binary word and the top element. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St000012The area of a Dyck path. St000017The number of inversions of a standard tableau. St000023The number of inner peaks of a permutation. St000034The maximum defect over any reduced expression for a permutation and any subexpression. St000091The descent variation of a composition. St000118The number of occurrences of the contiguous pattern [.,[.,[.,.]]] in a binary tree. St000130The number of occurrences of the contiguous pattern [.,[[.,.],[[.,.],.]]] in a binary tree. St000132The number of occurrences of the contiguous pattern [[.,.],[.,[[.,.],.]]] in a binary tree. St000137The Grundy value of an integer partition. St000217The number of occurrences of the pattern 312 in a permutation. St000241The number of cyclical small excedances. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000338The number of pixed points of a permutation. St000357The number of occurrences of the pattern 12-3. St000358The number of occurrences of the pattern 31-2. St000365The number of double ascents of a permutation. St000370The genus of a graph. St000372The number of mid points of increasing subsequences of length 3 in a permutation. St000394The sum of the heights of the peaks of a Dyck path minus the number of peaks. St000406The number of occurrences of the pattern 3241 in a permutation. St000407The number of occurrences of the pattern 2143 in a permutation. St000421The number of Dyck paths that are weakly below a Dyck path, except for the path itself. St000442The maximal area to the right of an up step of a Dyck path. St000488The number of cycles of a permutation of length at most 2. St000489The number of cycles of a permutation of length at most 3. St000560The number of occurrences of the pattern {{1,2},{3,4}} in a set partition. St000562The number of internal points of a set partition. St000622The number of occurrences of the patterns 2143 or 4231 in a permutation. St000624The normalized sum of the minimal distances to a greater element. St000649The number of 3-excedences of a permutation. St000650The number of 3-rises of a permutation. St000658The number of rises of length 2 of a Dyck path. St000659The number of rises of length at least 2 of a Dyck path. St000666The number of right tethers of a permutation. St000683The number of points below the Dyck path such that the diagonal to the north-east hits the path between two down steps, and the diagonal to the north-west hits the path between two up steps. St000688The global dimension minus the dominant dimension of the LNakayama algebra associated to a Dyck path. St000732The number of double deficiencies of a permutation. St000750The number of occurrences of the pattern 4213 in a permutation. St000751The number of occurrences of either of the pattern 2143 or 2143 in a permutation. St000803The number of occurrences of the vincular pattern |132 in a permutation. St000804The number of occurrences of the vincular pattern |123 in a permutation. St000872The number of very big descents of a permutation. St000873The aix statistic of a permutation. St000881The number of short braid edges in the graph of braid moves of a permutation. St000885The number of critical steps in the Catalan decomposition of a binary word. St000921The number of internal inversions of a binary word. St000966Number of peaks minus the global dimension of the corresponding LNakayama algebra. St000970Number of peaks minus the dominant dimension of the corresponding LNakayama algebra. St000984The number of boxes below precisely one peak. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001008Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001010Number of indecomposable injective modules with projective dimension g-1 when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001017Number of indecomposable injective modules with projective dimension equal to the codominant dimension in the Nakayama algebra corresponding to the Dyck path. St001026The maximum of the projective dimensions of the indecomposable non-projective injective modules minus the minimum in the Nakayama algebra corresponding to the Dyck path. St001027Number of simple modules with projective dimension equal to injective dimension in the Nakayama algebra corresponding to the Dyck path. St001036The number of inner corners of the parallelogram polyomino associated with the Dyck path. St001061The number of indices that are both descents and recoils of a permutation. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001126Number of simple module that are 1-regular in the corresponding Nakayama algebra. St001130The number of two successive successions in a permutation. St001139The number of occurrences of hills of size 2 in a Dyck path. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001273The projective dimension of the first term in an injective coresolution of the regular module. St001280The number of parts of an integer partition that are at least two. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001309The number of four-cliques in a graph. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001329The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001383The BG-rank of an integer partition. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001411The number of patterns 321 or 3412 in a permutation. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001424The number of distinct squares in a binary word. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001466The number of transpositions swapping cyclically adjacent numbers in a permutation. St001470The cyclic holeyness of a permutation. St001480The number of simple summands of the module J^2/J^3. St001498The normalised height of a Nakayama algebra with magnitude 1. St001502The global dimension minus the dominant dimension of magnitude 1 Nakayama algebras. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001525The number of symmetric hooks on the diagonal of a partition. St001535The number of cyclic alignments of a permutation. St001537The number of cyclic crossings of a permutation. St001541The Gini index of an integer partition. St001549The number of restricted non-inversions between exceedances. St001550The number of inversions between exceedances where the greater exceedance is linked. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001559The number of transpositions that are smaller or equal to a permutation in Bruhat order while not being inversions. St001570The minimal number of edges to add to make a graph Hamiltonian. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001663The number of occurrences of the Hertzsprung pattern 132 in a permutation. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001685The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation. St001705The number of occurrences of the pattern 2413 in a permutation. St001715The number of non-records in a permutation. St001745The number of occurrences of the arrow pattern 13 with an arrow from 1 to 2 in a permutation. St001781The interlacing number of a set partition. St001811The Castelnuovo-Mumford regularity of a permutation. St001856The number of edges in the reduced word graph of a permutation. St001867The number of alignments of type EN of a signed permutation. St001871The number of triconnected components of a graph. St001873For a Nakayama algebra corresponding to a Dyck path, we define the matrix C with entries the Hom-spaces between $e_i J$ and $e_j J$ (the radical of the indecomposable projective modules). St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St001948The number of augmented double ascents of a permutation. St001955The number of natural descents for set-valued two row standard Young tableaux. St001960The number of descents of a permutation minus one if its first entry is not one. St000032The number of elements smaller than the given Dyck path in the Tamari Order. St000038The product of the heights of the descending steps of a Dyck path. St000078The number of alternating sign matrices whose left key is the permutation. St000099The number of valleys of a permutation, including the boundary. St000144The pyramid weight of the Dyck path. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000239The number of small weak excedances. St000243The number of cyclic valleys and cyclic peaks of a permutation. St000255The number of reduced Kogan faces with the permutation as type. St000293The number of inversions of a binary word. St000335The difference of lower and upper interactions. St000395The sum of the heights of the peaks of a Dyck path. St000418The number of Dyck paths that are weakly below a Dyck path. St000419The number of Dyck paths that are weakly above the Dyck path, except for the path itself. St000443The number of long tunnels of a Dyck path. St000444The length of the maximal rise of a Dyck path. St000519The largest length of a factor maximising the subword complexity. St000570The Edelman-Greene number of a permutation. St000631The number of distinct palindromic decompositions of a binary word. St000667The greatest common divisor of the parts of the partition. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000706The product of the factorials of the multiplicities of an integer partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000880The number of connected components of long braid edges in the graph of braid moves of a permutation. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St000922The minimal number such that all substrings of this length are unique. St000939The number of characters of the symmetric group whose value on the partition is positive. St000952Gives the number of irreducible factors of the Coxeter polynomial of the Dyck path over the rational numbers. St000955Number of times one has $Ext^i(D(A),A)>0$ for $i>0$ for the corresponding LNakayama algebra. St000982The length of the longest constant subword. St000993The multiplicity of the largest part of an integer partition. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001014Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path. St001015Number of indecomposable injective modules with codominant dimension equal to one in the Nakayama algebra corresponding to the Dyck path. St001016Number of indecomposable injective modules with codominant dimension at most 1 in the Nakayama algebra corresponding to the Dyck path. St001018Sum of projective dimension of the indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001020Sum of the codominant dimensions of the non-projective indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001063Numbers of 3-torsionfree simple modules in the corresponding Nakayama algebra. St001088Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001162The minimum jump of a permutation. St001183The maximum of $projdim(S)+injdim(S)$ over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001220The width of a permutation. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001241The number of non-zero radicals of the indecomposable projective modules that have injective dimension and projective dimension at most one. St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St001297The number of indecomposable non-injective projective modules minus the number of indecomposable non-injective projective modules that have reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001348The bounce of the parallelogram polyomino associated with the Dyck path. St001389The number of partitions of the same length below the given integer partition. St001413Half the length of the longest even length palindromic prefix of a binary word. St001416The length of a longest palindromic factor of a binary word. St001417The length of a longest palindromic subword of a binary word. St001436The index of a given binary word in the lex-order among all its cyclic shifts. St001488The number of corners of a skew partition. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001515The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule). St001520The number of strict 3-descents. St001523The degree of symmetry of a Dyck path. St001527The cyclic permutation representation number of an integer partition. St001531Number of partial orders contained in the poset determined by the Dyck path. St001571The Cartan determinant of the integer partition. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001591The number of graphs with the given composition of multiplicities of Laplacian eigenvalues. St001660The number of ways to place as many non-attacking rooks as possible on a skew Ferrers board. St001661Half the permanent of the Identity matrix plus the permutation matrix associated to the permutation. St001693The excess length of a longest path consisting of elements and blocks of a set partition. St001768The number of reduced words of a signed permutation. St001839The number of excedances of a set partition. St001929The number of meanders with top half given by the noncrossing matching corresponding to the Dyck path. St001941The evaluation at 1 of the modified Kazhdan--Lusztig R polynomial (as in [1, Section 5. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St001959The product of the heights of the peaks of a Dyck path. St000014The number of parking functions supported by a Dyck path. St000236The number of cyclical small weak excedances. St000248The number of anti-singletons of a set partition. St000249The number of singletons (St000247) plus the number of antisingletons (St000248) of a set partition. St000308The height of the tree associated to a permutation. St000333The dez statistic, the number of descents of a permutation after replacing fixed points by zeros. St000393The number of strictly increasing runs in a binary word. St000420The number of Dyck paths that are weakly above a Dyck path. St000504The cardinality of the first block of a set partition. St000529The number of permutations whose descent word is the given binary word. St000543The size of the conjugacy class of a binary word. St000626The minimal period of a binary word. St000636The hull number of a graph. St000742The number of big ascents of a permutation after prepending zero. St000998Number of indecomposable projective modules with injective dimension smaller than or equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001012Number of simple modules with projective dimension at most 2 in the Nakayama algebra corresponding to the Dyck path. St001023Number of simple modules with projective dimension at most 3 in the Nakayama algebra corresponding to the Dyck path. St001062The maximal size of a block of a set partition. St001065Number of indecomposable reflexive modules in the corresponding Nakayama algebra. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001166Number of indecomposable projective non-injective modules with dominant dimension equal to the global dimension plus the number of indecomposable projective injective modules in the corresponding Nakayama algebra. St001170Number of indecomposable injective modules whose socle has projective dimension at most g-1 when g denotes the global dimension in the corresponding Nakayama algebra. St001179Number of indecomposable injective modules with projective dimension at most 2 in the corresponding Nakayama algebra. St001180Number of indecomposable injective modules with projective dimension at most 1. St001190Number of simple modules with projective dimension at most 4 in the corresponding Nakayama algebra. St001211The number of simple modules in the corresponding Nakayama algebra that have vanishing second Ext-group with the regular module. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001237The number of simple modules with injective dimension at most one or dominant dimension at least one. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001267The length of the Lyndon factorization of the binary word. St001269The sum of the minimum of the number of exceedances and deficiencies in each cycle of a permutation. St001437The flex of a binary word. St001471The magnitude of a Dyck path. St001492The number of simple modules that do not appear in the socle of the regular module or have no nontrivial selfextensions with the regular module in the corresponding Nakayama algebra. St001650The order of Ringel's homological bijection associated to the linear Nakayama algebra corresponding to the Dyck path. St001654The monophonic hull number of a graph. St001658The total number of rook placements on a Ferrers board. St001741The largest integer such that all patterns of this size are contained in the permutation. St000967The value p(1) for the Coxeterpolynomial p of the corresponding LNakayama algebra. St001019Sum of the projective dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001108The 2-dynamic chromatic number of a graph. St001218Smallest index k greater than or equal to one such that the Coxeter matrix C of the corresponding Nakayama algebra has C^k=1. St001643The Frobenius dimension of the Nakayama algebra corresponding to the Dyck path. St001838The number of nonempty primitive factors of a binary word. St001213The number of indecomposable modules in the corresponding Nakayama algebra that have vanishing first Ext-group with the regular module. St001624The breadth of a lattice. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St000281The size of the preimage of the map 'to poset' from Binary trees to Posets. St000282The size of the preimage of the map 'to poset' from Ordered trees to Posets. St000567The sum of the products of all pairs of parts. St000879The number of long braid edges in the graph of braid moves of a permutation. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001301The first Betti number of the order complex associated with the poset. St001534The alternating sum of the coefficients of the Poincare polynomial of the poset cone. St001631The number of simple modules $S$ with $dim Ext^1(S,A)=1$ in the incidence algebra $A$ of the poset. St000908The length of the shortest maximal antichain in a poset. St000911The number of maximal antichains of maximal size in a poset. St000914The sum of the values of the Möbius function of a poset. St001613The binary logarithm of the size of the center of a lattice. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St000642The size of the smallest orbit of antichains under Panyushev complementation. St000907The number of maximal antichains of minimal length in a poset. St001616The number of neutral elements in a lattice. St001720The minimal length of a chain of small intervals in a lattice. St000717The number of ordinal summands of a poset. St001618The cardinality of the Frattini sublattice of a lattice. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St000259The diameter of a connected graph. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000928The sum of the coefficients of the character polynomial of an integer partition. St000941The number of characters of the symmetric group whose value on the partition is even. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001651The Frankl number of a lattice. St000509The diagonal index (content) of a partition. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000681The Grundy value of Chomp on Ferrers diagrams. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000927The alternating sum of the coefficients of the character polynomial of an integer partition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St000477The weight of a partition according to Alladi. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000888The maximal sum of entries on a diagonal of an alternating sign matrix. St000892The maximal number of nonzero entries on a diagonal of an alternating sign matrix. St000937The number of positive values of the symmetric group character corresponding to the partition. St000997The even-odd crank of an integer partition. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001875The number of simple modules with projective dimension at most 1. St000189The number of elements in the poset. St000713The dimension of the irreducible representation of Sp(4) labelled by an integer partition. St000124The cardinality of the preimage of the Simion-Schmidt map. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!