Your data matches 9 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00201: Dyck paths RingelPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00121: Dyck paths Cori-Le Borgne involutionDyck paths
St001199: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 2
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 4
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> 1
Description
The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St001498
Mp00201: Dyck paths RingelPermutations
Mp00238: Permutations Clarke-Steingrimsson-ZengPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St001498: Dyck paths ⟶ ℤResult quality: 20% values known / values provided: 32%distinct values known / distinct values provided: 20%
Values
[1,1,0,0]
=> [2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,0]
=> [3,1,4,2] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? = 1 - 1
[1,1,0,0,1,0]
=> [2,4,1,3] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> ? = 1 - 1
[1,1,1,0,0,0]
=> [2,3,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 2 - 1
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 - 1
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 - 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [4,2,1,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 3 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6,1,4,2,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,3,1,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [6,4,5,1,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6,3,1,4,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [5,3,1,2,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6,3,1,4,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 3 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [6,2,1,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6,2,1,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6,2,4,1,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [5,2,6,1,3,4] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6,2,4,1,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [3,1,6,5,2,4] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [6,1,2,3,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [6,1,4,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [6,3,4,1,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [6,3,4,1,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [6,2,3,1,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [6,2,3,5,1,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [4,2,1,6,3,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [5,2,1,3,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [6,2,4,5,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [6,4,5,3,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => [6,2,3,4,1,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => [5,2,3,1,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => [5,2,1,6,4,3] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 4 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [7,1,2,3,6,4,5] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [7,1,2,5,3,4,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [7,1,2,5,3,6,4] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [7,1,4,2,3,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [7,1,4,2,6,3,5] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 2 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => [7,1,5,6,2,3,4] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => [7,1,4,2,5,3,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 2 - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => [6,1,4,2,3,7,5] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => [7,1,4,2,5,6,3] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [7,3,1,2,4,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => [7,3,1,2,6,4,5] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 2 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [7,3,1,5,2,4,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 2 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,7,2,6,4,5] => [6,3,1,7,2,4,5] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => [7,3,1,5,2,6,4] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 3 - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,1,4,2,3,7,5] => [4,7,1,2,6,3,5] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [7,6,1,2,3,4,5] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => [7,5,1,6,2,3,4] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,1,4,2,7,3,6] => [7,4,5,1,2,3,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [5,1,4,2,6,7,3] => [7,4,5,1,2,6,3] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,7,5,2,4,6] => [5,3,1,2,7,4,6] => [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => [6,3,1,2,4,7,5] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => [6,3,1,4,2,7,5] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => [6,3,1,2,7,5,4] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,7,1,3,6,4,5] => [6,2,1,7,3,4,5] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,7,1,5,3,4,6] => [5,2,7,1,3,4,6] => [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,7,1,6,3,4,5] => [6,2,7,1,3,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,4,1,7,6,3,5] => [6,2,4,1,3,7,5] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,7,1,5,6,3,4] => [6,2,7,1,3,5,4] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [6,3,1,2,4,7,5] => [3,1,7,2,6,4,5] => [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [5,3,1,2,7,4,6] => [3,1,7,5,2,4,6] => [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [5,3,1,2,6,7,4] => [3,1,7,5,2,6,4] => [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [6,4,1,2,3,7,5] => [4,1,2,7,6,3,5] => [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [5,7,1,2,6,3,4] => [6,1,7,2,5,3,4] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6,7,1,5,2,3,4] => [5,7,1,2,3,6,4] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => [6,3,4,1,2,7,5] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [2,3,7,1,6,4,5] => [6,2,3,7,1,4,5] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,1,0,0,1,0,1,0]
=> [2,7,4,1,3,5,6] => [4,2,1,7,3,5,6] => [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,6,4,1,3,7,5] => [4,2,1,7,6,3,5] => [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [2,7,5,1,3,4,6] => [5,2,1,3,7,4,6] => [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [2,7,4,1,6,3,5] => [6,2,4,7,1,3,5] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [2,7,5,1,6,3,4] => [6,2,5,1,7,3,4] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [6,3,4,1,2,7,5] => [4,1,7,3,6,2,5] => [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [4,1,2,7,3,6,5] => [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,7,5,1,2,3,4] => [5,1,2,3,7,6,4] => [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [2,3,7,5,1,4,6] => [5,2,3,1,7,4,6] => [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [2,3,7,6,1,4,5] => [6,2,3,1,4,7,5] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [2,7,4,5,1,3,6] => [5,2,1,7,4,3,6] => [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [2,7,4,6,1,3,5] => [6,2,1,7,4,3,5] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [2,7,6,5,1,3,4] => [5,2,1,3,6,7,4] => [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> 0 = 1 - 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [2,3,4,7,6,1,5] => [6,2,3,4,1,7,5] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [2,3,7,5,6,1,4] => [6,2,3,1,7,5,4] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [2,7,4,5,6,1,3] => [6,2,1,7,4,5,3] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> 0 = 1 - 1
Description
The normalised height of a Nakayama algebra with magnitude 1. We use the bijection (see code) suggested by Christian Stump, to have a bijection between such Nakayama algebras with magnitude 1 and Dyck paths. The normalised height is the height of the (periodic) Dyck path given by the top of the Auslander-Reiten quiver. Thus when having a CNakayama algebra it is the Loewy length minus the number of simple modules and for the LNakayama algebras it is the usual height.
Matching statistic: St001060
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00160: Permutations graph of inversionsGraphs
Mp00247: Graphs de-duplicateGraphs
St001060: Graphs ⟶ ℤResult quality: 20% values known / values provided: 26%distinct values known / distinct values provided: 20%
Values
[1,1,0,0]
=> [1,2] => ([],2)
=> ([],1)
=> ? = 1 + 1
[1,0,1,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,0,0,1,0]
=> [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ([],1)
=> ? = 2 + 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2 + 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2 + 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> ? = 3 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 2 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([],5)
=> ([],1)
=> ? = 4 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,1,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5] => ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,3,4,1,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,1,5,6,4] => ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,6] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,3,1,4,6,5] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ? = 2 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,6,4,5] => ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,1,4,5,6] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,5,6,3] => ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,5,3,6] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5] => ([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 2 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,6,3,5] => ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [2,4,1,5,3,6] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [2,4,5,1,3,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,4,1,3,5,6] => ([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,5,1,3,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,4,6,2,5] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,5,2,6,4] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,3,5,6,2,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4,6] => ([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,3,6,2,4,5] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [3,1,4,5,2,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [3,1,4,2,5,6] => ([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [3,4,1,5,2,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [3,4,5,1,6,2] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4,6] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 1 + 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [3,5,6,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,2,4,6,3,5] => ([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,4,2,5,6,3] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,4,2,5,3,6] => ([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,4,5,2,6,3] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,4,2,6,3,5] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 1 + 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,4,6,2,3,5] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [4,1,2,5,3,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,1,5,6,2,3] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,1,5,2,3,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [4,5,1,6,2,3] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,2,5,3,6,4] => ([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,5,2,3,6,4] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,5,2,6,3,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
Description
The distinguishing index of a graph. This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism. If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00160: Permutations graph of inversionsGraphs
St000264: Graphs ⟶ ℤResult quality: 17% values known / values provided: 17%distinct values known / distinct values provided: 20%
Values
[1,1,0,0]
=> [2,1] => ([(0,1)],2)
=> ? = 1 + 3
[1,0,1,1,0,0]
=> [1,3,2] => ([(1,2)],3)
=> ? = 1 + 3
[1,1,0,0,1,0]
=> [2,1,3] => ([(1,2)],3)
=> ? = 1 + 3
[1,1,1,0,0,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> ? = 2 + 3
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? = 1 + 3
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => ([(2,3)],4)
=> ? = 1 + 3
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? = 2 + 3
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ? = 1 + 3
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? = 2 + 3
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 3
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? = 1 + 3
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 3
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? = 3 + 3
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ? = 1 + 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => ([(3,4)],5)
=> ? = 1 + 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? = 1 + 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> ? = 1 + 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? = 2 + 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ? = 1 + 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? = 2 + 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ? = 1 + 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? = 3 + 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? = 1 + 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? = 2 + 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? = 2 + 3
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? = 1 + 3
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? = 3 + 3
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? = 1 + 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1 + 3
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? = 1 + 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1 + 3
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? = 1 + 3
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? = 1 + 3
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ? = 1 + 3
[1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1 + 3
[1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2 + 3
[1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 1 + 3
[1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 3
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1 + 3
[1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 1 + 3
[1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 4 + 3
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => ([(4,5)],6)
=> ? = 1 + 3
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => ([(4,5)],6)
=> ? = 1 + 3
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => ([(3,5),(4,5)],6)
=> ? = 1 + 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => ([(4,5)],6)
=> ? = 1 + 3
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> ? = 2 + 3
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,3,5] => ([(2,5),(3,4),(4,5)],6)
=> ? = 1 + 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,3,4,6] => ([(3,5),(4,5)],6)
=> ? = 2 + 3
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,3,6,4] => ([(2,5),(3,4),(4,5)],6)
=> ? = 1 + 3
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,3,4,5] => ([(2,5),(3,5),(4,5)],6)
=> ? = 1 + 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => ([(4,5)],6)
=> ? = 1 + 3
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,2,3,5] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4 = 1 + 3
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,6,3,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4 = 1 + 3
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,1,5,6,3,4] => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 1 + 3
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4 = 1 + 3
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 1 + 3
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 4 = 1 + 3
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,1,5,6,2,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 4 = 1 + 3
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [3,4,1,2,6,5] => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 1 + 3
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [3,4,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4 = 1 + 3
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,4,1,6,2,5] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 4 = 1 + 3
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,1,6,2] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 1 + 3
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 1 + 3
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 4 = 1 + 3
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,1,2,4,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4 = 1 + 3
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,6,1,2,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4 = 1 + 3
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,5,2,3,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4 = 1 + 3
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,1,5,2,6,3] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 4 = 1 + 3
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,1,5,6,2,3] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 4 = 1 + 3
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [4,1,6,2,3,5] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 1 + 3
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 1 + 3
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [5,1,2,6,3,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4 = 1 + 3
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [5,1,6,2,3,4] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 1 + 3
Description
The girth of a graph, which is not a tree. This is the length of the shortest cycle in the graph.
Matching statistic: St000837
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00201: Dyck paths RingelPermutations
Mp00088: Permutations Kreweras complementPermutations
St000837: Permutations ⟶ ℤResult quality: 10% values known / values provided: 10%distinct values known / distinct values provided: 80%
Values
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => [1,2,3,4] => 2 = 1 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [4,1,3,2,5] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [5,2,1,4,3] => 2 = 1 + 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => 3 = 2 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [4,5,1,3,2,6] => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [4,6,3,1,5,2] => 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [4,1,3,2,5,6] => 3 = 2 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [5,2,6,1,4,3] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [5,2,1,4,3,6] => 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [5,1,3,4,2,6] => 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => [6,2,3,1,5,4] => 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => [6,2,1,4,5,3] => 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [1,2,3,4,5,6] => 4 = 3 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [5,6,1,2,3,7,4] => [4,5,6,1,2,3,7] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [7,4,1,2,6,3,5] => [4,5,7,3,1,6,2] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [5,4,1,2,6,7,3] => [4,5,1,3,2,6,7] => ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,3,1,6,2,4,5] => [4,6,3,7,1,5,2] => ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [6,3,1,5,2,7,4] => [4,6,3,1,5,2,7] => ? = 2 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [6,4,1,5,2,7,3] => [4,6,1,3,5,2,7] => ? = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => [4,7,3,2,1,6,5] => ? = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [7,3,1,5,6,2,4] => [4,7,3,1,5,6,2] => ? = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [4,3,1,5,6,7,2] => [4,1,3,2,5,6,7] => ? = 3 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,6,7,1,3,4,5] => [5,2,6,7,1,3,4] => ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [5,2,6,1,4,3,7] => ? = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [2,7,4,1,6,3,5] => [5,2,7,4,1,6,3] => ? = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [2,7,5,1,6,3,4] => [5,2,7,1,4,6,3] => ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,5,4,1,6,7,3] => [5,2,1,4,3,6,7] => ? = 3 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [6,3,5,1,2,7,4] => [5,6,3,1,4,2,7] => ? = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,7,5,1,2,3,4] => [5,6,7,1,4,2,3] => ? = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,5,4,1,2,7,3] => [5,6,1,4,3,2,7] => ? = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [7,3,4,1,6,2,5] => [5,7,3,4,1,6,2] => ? = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [5,3,4,1,6,7,2] => [5,1,3,4,2,6,7] => ? = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [2,3,7,6,1,4,5] => [6,2,3,7,1,5,4] => ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => [6,2,3,1,5,4,7] => ? = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [2,7,4,6,1,3,5] => [6,2,7,4,1,5,3] => ? = 1 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [2,7,6,5,1,3,4] => [6,2,7,1,5,4,3] => ? = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,6,4,5,1,7,3] => [6,2,1,4,5,3,7] => ? = 2 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [6,3,4,5,1,7,2] => [6,1,3,4,5,2,7] => ? = 1 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [2,3,4,7,6,1,5] => [7,2,3,4,1,6,5] => ? = 1 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [2,3,7,5,6,1,4] => [7,2,3,1,5,6,4] => ? = 1 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2,7,4,5,6,1,3] => [7,2,1,4,5,6,3] => ? = 1 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => [1,2,3,4,5,6,7] => 5 = 4 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [7,6,1,2,3,4,8,5] => [4,5,6,7,1,3,2,8] => ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [5,8,1,2,3,7,4,6] => [4,5,6,8,2,1,7,3] => ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [5,6,1,2,3,7,8,4] => [4,5,6,1,2,3,7,8] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [8,4,1,2,7,3,5,6] => [4,5,7,3,8,1,6,2] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [7,4,1,2,6,3,8,5] => [4,5,7,3,1,6,2,8] => ? = 2 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [5,7,1,2,6,3,8,4] => [4,5,7,1,2,6,3,8] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [5,4,1,2,8,7,3,6] => [4,5,8,3,2,1,7,6] => ? = 2 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [8,4,1,2,6,7,3,5] => [4,5,8,3,1,6,7,2] => ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [5,4,1,2,6,7,8,3] => [4,5,1,3,2,6,7,8] => ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [7,3,1,8,2,4,5,6] => [4,6,3,7,8,1,2,5] => ? = 1 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [7,3,1,6,2,4,8,5] => [4,6,3,7,1,5,2,8] => ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [8,3,1,5,2,7,4,6] => [4,6,3,8,5,1,7,2] => ? = 2 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [8,3,1,6,2,7,4,5] => [4,6,3,8,1,5,7,2] => ? = 1 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [6,3,1,5,2,7,8,4] => [4,6,3,1,5,2,7,8] => ? = 3 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [7,4,1,6,2,3,8,5] => [4,6,7,3,1,5,2,8] => ? = 1 + 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [8,7,1,6,2,3,4,5] => [4,6,7,8,1,5,3,2] => ? = 1 + 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [6,7,1,5,2,3,8,4] => [4,6,7,1,5,2,3,8] => ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [8,4,1,5,2,7,3,6] => [4,6,8,3,5,1,7,2] => ? = 1 + 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [6,4,1,5,2,7,8,3] => [4,6,1,3,5,2,7,8] => ? = 1 + 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3,1,8,7,2,5,6] => [4,7,3,2,8,1,6,5] => ? = 1 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [4,3,1,7,6,2,8,5] => [4,7,3,2,1,6,5,8] => ? = 3 + 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [8,3,1,5,7,2,4,6] => [4,7,3,8,5,1,6,2] => ? = 1 + 1
Description
The number of ascents of distance 2 of a permutation. This is, $\operatorname{asc}_2(\pi) = | \{ i : \pi(i) < \pi(i+2) \} |$.
Matching statistic: St001207
Mp00032: Dyck paths inverse zeta mapDyck paths
Mp00099: Dyck paths bounce pathDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St001207: Permutations ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 60%
Values
[1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> [2,1] => 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [2,1,3] => 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [2,3,1] => 2
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 3
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ? = 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ? = 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => ? = 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ? = 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => ? = 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => ? = 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => ? = 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => ? = 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => ? = 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ? = 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => ? = 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => ? = 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => ? = 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => ? = 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => ? = 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ? = 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => ? = 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => ? = 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => ? = 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => ? = 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => ? = 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ? = 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => ? = 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => ? = 2
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => ? = 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => ? = 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => ? = 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => ? = 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => ? = 4
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => ? = 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,1,4,5,6] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,1,4,5,6] => ? = 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,3,4,6,5] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => ? = 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,3,4,6,5] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,3,4,1,5,6] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => ? = 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,1,4,5,6] => ? = 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => ? = 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,3,4,6,5] => ? = 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,3,4,1,5,6] => ? = 3
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,3,5,4,6] => ? = 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,2,3,5,4,6] => ? = 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,5,6] => ? = 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,3,5,4,6] => ? = 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,3,1,4,6,5] => ? = 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => ? = 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,5,6] => ? = 3
Description
The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.
Matching statistic: St001181
Mp00201: Dyck paths RingelPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St001181: Dyck paths ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 60%
Values
[1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> ? = 1 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> ? = 2 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> ? = 2 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> ? = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> ? = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 1 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> ? = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> ? = 1 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> ? = 1 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> ? = 2 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 1 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> ? = 1 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 4 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> ? = 1 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> ? = 1 - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,1,0,0,0]
=> ? = 1 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,1,0,0,0]
=> ? = 2 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> ? = 1 - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,1,0,0,0,0]
=> ? = 2 - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,1,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,1,0,0,0]
=> ? = 2 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> ? = 2 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,7,2,6,4,5] => [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,1,4,2,3,7,5] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,1,4,2,7,3,6] => [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [5,1,4,2,6,7,3] => [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,1,0,0,0]
=> ? = 1 - 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,1,0,0,0]
=> ? = 3 - 1
Description
Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra.
Matching statistic: St001431
Mp00032: Dyck paths inverse zeta mapDyck paths
Mp00099: Dyck paths bounce pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St001431: Dyck paths ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 60%
Values
[1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 2 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> ? = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 3 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 3 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> ? = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> ? = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> ? = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> ? = 1 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> ? = 1 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> ? = 1 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> ? = 1 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 3 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> ? = 3 + 1
Description
Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. The modified algebra B is obtained from the stable Auslander algebra kQ/I by deleting all relations which contain walks of length at least three (conjectural this step of deletion is not necessary as the stable higher Auslander algebras might be quadratic) and taking as B then the algebra kQ^(op)/J when J is the quadratic perp of the ideal I. See http://www.findstat.org/DyckPaths/NakayamaAlgebras for the definition of Loewy length and Nakayama algebras associated to Dyck paths.
Matching statistic: St001526
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00118: Dyck paths swap returns and last descentDyck paths
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
St001526: Dyck paths ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 60%
Values
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3 = 1 + 2
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 1 + 2
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 3 = 1 + 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4 = 2 + 2
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3 = 1 + 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 3 = 1 + 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4 = 2 + 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 3 = 1 + 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 4 = 2 + 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 1 + 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 1 + 2
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3 = 1 + 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5 = 3 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> ? = 1 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> ? = 1 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> ? = 2 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 1 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> ? = 2 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> ? = 1 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> ? = 1 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> ? = 2 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> ? = 2 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> ? = 1 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 3 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 1 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 1 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> ? = 1 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 1 + 2
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> ? = 2 + 2
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 1 + 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> ? = 1 + 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> ? = 1 + 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 4 + 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 + 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> ? = 1 + 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> ? = 1 + 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> ? = 2 + 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 1 + 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> ? = 2 + 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> ? = 1 + 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> ? = 1 + 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> ? = 2 + 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> ? = 2 + 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> ? = 1 + 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 3 + 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 1 + 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 1 + 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> ? = 1 + 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 1 + 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 3 + 2
Description
The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path.