Your data matches 173 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001205: Dyck paths āŸ¶ ā„¤Result quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> 0
[1,0,1,0]
=> 1
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 2
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> 1
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> 1
Description
The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. See http://www.findstat.org/DyckPaths/NakayamaAlgebras for the definition of Nakayama algebra and the relation to Dyck paths.
Mp00199: Dyck paths ā€”prime Dyck pathāŸ¶ Dyck paths
Mp00222: Dyck paths ā€”peaks-to-valleysāŸ¶ Dyck paths
St001505: Dyck paths āŸ¶ ā„¤Result quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 3 = 0 + 3
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 4 = 1 + 3
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 3 = 0 + 3
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 5 = 2 + 3
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 4 = 1 + 3
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 4 = 1 + 3
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 4 = 1 + 3
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 0 + 3
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 6 = 3 + 3
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5 = 2 + 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 5 = 2 + 3
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 5 = 2 + 3
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 4 = 1 + 3
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 5 = 2 + 3
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 4 = 1 + 3
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 5 = 2 + 3
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 1 + 3
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 4 = 1 + 3
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 4 = 1 + 3
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 4 = 1 + 3
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 4 = 1 + 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 3 = 0 + 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 7 = 4 + 3
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 6 = 3 + 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 6 = 3 + 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 6 = 3 + 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 5 = 2 + 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 6 = 3 + 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> 5 = 2 + 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 6 = 3 + 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 5 = 2 + 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> 5 = 2 + 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> 5 = 2 + 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> 5 = 2 + 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 5 = 2 + 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 4 = 1 + 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 6 = 3 + 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> 5 = 2 + 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> 5 = 2 + 3
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 5 = 2 + 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 4 = 1 + 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 6 = 3 + 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 5 = 2 + 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 5 = 2 + 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5 = 2 + 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 4 = 1 + 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> 5 = 2 + 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 5 = 2 + 3
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 4 = 1 + 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 4 = 1 + 3
Description
The number of elements generated by the Dyck path as a map in the full transformation monoid. We view the resolution quiver of a Dyck path (corresponding to an LNakayamaalgebra) as a transformation and associate to it the submonoid generated by this map in the full transformation monoid.
Matching statistic: St000319
Mp00032: Dyck paths ā€”inverse zeta mapāŸ¶ Dyck paths
Mp00023: Dyck paths ā€”to non-crossing permutationāŸ¶ Permutations
Mp00204: Permutations ā€”LLPSāŸ¶ Integer partitions
St000319: Integer partitions āŸ¶ ā„¤Result quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => [1]
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => [2]
=> 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => [1,1]
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => [3]
=> 2
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [2,1]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [2,1]
=> 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [2,1]
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,1,1]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [3,1]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,1]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,1]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [2,1,1]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [3,1]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [2,1,1]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,1]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,2]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [2,1,1]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,1,1]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,1,1]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,1]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [5]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [4,1]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [4,1]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [4,1]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [3,1,1]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => [4,1]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [3,1,1]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [4,1]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [3,2]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [3,1,1]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [3,1,1]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [3,1,1]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,1,1]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [2,1,1,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => [4,1]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [3,1,1]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [3,1,1]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,2,3,1,5] => [3,1,1]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [2,1,1,1]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => [4,1]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [3,1,1]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [3,2]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [3,2]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,2,1]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,1,1]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [3,1,1]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,2,1]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [2,1,1,1]
=> 1
Description
The spin of an integer partition. The Ferrers shape of an integer partition $\lambda$ can be decomposed into border strips. The spin is then defined to be the total number of crossings of border strips of $\lambda$ with the vertical lines in the Ferrers shape. The following example is taken from Appendix B in [1]: Let $\lambda = (5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions $$(5,5,4,4,2,1), (4,3,3,1), (2,2), (1), ().$$ The first strip $(5,5,4,4,2,1) \setminus (4,3,3,1)$ crosses $4$ times, the second strip $(4,3,3,1) \setminus (2,2)$ crosses $3$ times, the strip $(2,2) \setminus (1)$ crosses $1$ time, and the remaining strip $(1) \setminus ()$ does not cross. This yields the spin of $(5,5,4,4,2,1)$ to be $4+3+1 = 8$.
Matching statistic: St000320
Mp00032: Dyck paths ā€”inverse zeta mapāŸ¶ Dyck paths
Mp00023: Dyck paths ā€”to non-crossing permutationāŸ¶ Permutations
Mp00204: Permutations ā€”LLPSāŸ¶ Integer partitions
St000320: Integer partitions āŸ¶ ā„¤Result quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => [1]
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => [2]
=> 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => [1,1]
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => [3]
=> 2
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [2,1]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [2,1]
=> 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [2,1]
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,1,1]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [3,1]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,1]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,1]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [2,1,1]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [3,1]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [2,1,1]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,1]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,2]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [2,1,1]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,1,1]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,1,1]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,1]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [5]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [4,1]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [4,1]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [4,1]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [3,1,1]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => [4,1]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [3,1,1]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [4,1]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [3,2]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [3,1,1]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [3,1,1]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [3,1,1]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,1,1]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [2,1,1,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => [4,1]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [3,1,1]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [3,1,1]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,2,3,1,5] => [3,1,1]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [2,1,1,1]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => [4,1]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [3,1,1]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [3,2]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [3,2]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,2,1]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,1,1]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [3,1,1]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,2,1]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [2,1,1,1]
=> 1
Description
The dinv adjustment of an integer partition. The Ferrers shape of an integer partition $\lambda = (\lambda_1,\ldots,\lambda_k)$ can be decomposed into border strips. For $0 \leq j < \lambda_1$ let $n_j$ be the length of the border strip starting at $(\lambda_1-j,0)$. The dinv adjustment is then defined by $$\sum_{j:n_j > 0}(\lambda_1-1-j).$$ The following example is taken from Appendix B in [2]: Let $\lambda=(5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions $$(5,5,4,4,2,1),(4,3,3,1),(2,2),(1),(),$$ and we obtain $(n_0,\ldots,n_4) = (10,7,0,3,1)$. The dinv adjustment is thus $4+3+1+0 = 8$.
Matching statistic: St001717
Mp00032: Dyck paths ā€”inverse zeta mapāŸ¶ Dyck paths
Mp00026: Dyck paths ā€”to ordered treeāŸ¶ Ordered trees
Mp00047: Ordered trees ā€”to posetāŸ¶ Posets
St001717: Posets āŸ¶ ā„¤Result quality: 81% ā—values known / values provided: 81%ā—distinct values known / distinct values provided: 83%
Values
[1,0]
=> [1,0]
=> [[]]
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,0,1,0]
=> [1,1,0,0]
=> [[[]]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[1,1,0,0]
=> [1,0,1,0]
=> [[],[]]
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 1 + 2
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 3 = 1 + 2
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 1 + 2
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4 = 2 + 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4 = 2 + 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4 = 2 + 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3 = 1 + 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 4 = 2 + 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 3 = 1 + 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4 = 2 + 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3 = 1 + 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> 3 = 1 + 2
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 3 = 1 + 2
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3 = 1 + 2
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 5 = 3 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[[],[[[]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> 5 = 3 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 5 = 3 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4 = 2 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[[[],[[]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> 5 = 3 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 4 = 2 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[[[[]]],[]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> 5 = 3 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 4 = 2 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4 = 2 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[[],[],[[]]]]
=> ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> 4 = 2 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 4 = 2 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4 = 2 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3 = 1 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[[[[],[]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> 5 = 3 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 4 = 2 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[[],[[],[]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> 4 = 2 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 4 = 2 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 1 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[[[[]],[]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> 5 = 3 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 4 = 2 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[[[]],[[]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> 4 = 2 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 4 = 2 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[[],[[]],[]]]
=> ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> 4 = 2 + 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 4 = 2 + 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 5 + 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[],[[[[[]]]]]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> ? = 4 + 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[[[[]]]]],[]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> ? = 4 + 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [[[[],[[[]]]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 4 + 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [[],[[],[[[]]]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ? = 3 + 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [[[]],[[[[]]]]]
=> ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7)
=> ? = 3 + 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [[[],[[[]]]],[]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ? = 3 + 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [[[[[],[[]]]]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 4 + 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [[[],[[],[[]]]]]
=> ([(0,6),(1,5),(2,3),(3,6),(5,4),(6,5)],7)
=> ? = 3 + 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [[[[[[]]],[]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 4 + 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [[],[[[[]]],[]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ? = 3 + 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [[[[]],[[[]]]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 3 + 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[[[[]]]],[[]]]
=> ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7)
=> ? = 3 + 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [[],[[]],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ? = 2 + 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [[[[[]]],[]],[]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ? = 3 + 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [[[]],[],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ? = 2 + 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [[[[],[[]]],[]]]
=> ([(0,6),(1,5),(2,3),(3,6),(5,4),(6,5)],7)
=> ? = 3 + 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [[[]],[[],[[]]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ? = 2 + 2
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [[[]],[[[]]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ? = 2 + 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [[[[[[]],[]]]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 4 + 2
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [[[],[[[]],[]]]]
=> ([(0,6),(1,5),(2,3),(3,6),(5,4),(6,5)],7)
=> ? = 3 + 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [[[[[]],[[]]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 3 + 2
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ? = 2 + 2
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [[[[[]]],[[]]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 3 + 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[[[]]],[[[]]]]
=> ([(0,5),(1,4),(2,6),(3,6),(4,2),(5,3)],7)
=> ? = 3 + 2
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [[],[[[]]],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ? = 2 + 2
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [[[],[[]],[[]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ? = 2 + 2
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [[[[]],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ? = 2 + 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [[[[]]],[],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ? = 2 + 2
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [[[[[]],[]],[]]]
=> ([(0,6),(1,5),(2,3),(3,6),(5,4),(6,5)],7)
=> ? = 3 + 2
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [[[]],[[[]],[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ? = 2 + 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[[[]],[],[[]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ? = 2 + 2
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [[[],[[]]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ? = 2 + 2
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [[[[]]],[[]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ? = 2 + 2
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [[[[]],[[]],[]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ? = 2 + 2
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [[[[]],[]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ? = 2 + 2
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ? = 1 + 2
Description
The largest size of an interval in a poset.
Mp00099: Dyck paths ā€”bounce pathāŸ¶ Dyck paths
Mp00199: Dyck paths ā€”prime Dyck pathāŸ¶ Dyck paths
Mp00143: Dyck paths ā€”inverse promotionāŸ¶ Dyck paths
St000306: Dyck paths āŸ¶ ā„¤Result quality: 81% ā—values known / values provided: 81%ā—distinct values known / distinct values provided: 83%
Values
[1,0]
=> [1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 4 = 3 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 4 = 3 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 5 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 4 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 4 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 3 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 3 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 3 + 1
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 3 + 1
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3 + 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 2 + 1
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 2 + 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 2 + 1
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 2 + 1
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 2 + 1
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1 + 1
Description
The bounce count of a Dyck path. For a Dyck path $D$ of length $2n$, this is the number of points $(i,i)$ for $1 \leq i < n$ that are touching points of the [[Mp00099|bounce path]] of $D$.
Matching statistic: St000527
Mp00032: Dyck paths ā€”inverse zeta mapāŸ¶ Dyck paths
Mp00199: Dyck paths ā€”prime Dyck pathāŸ¶ Dyck paths
Mp00242: Dyck paths ā€”Hessenberg posetāŸ¶ Posets
St000527: Posets āŸ¶ ā„¤Result quality: 68% ā—values known / values provided: 68%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,1,0,0]
=> ([],2)
=> 2 = 0 + 2
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> ([],3)
=> 3 = 1 + 2
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> ([(1,2)],3)
=> 2 = 0 + 2
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4 = 2 + 2
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> 3 = 1 + 2
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 3 = 1 + 2
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> 3 = 1 + 2
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([],5)
=> 5 = 3 + 2
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(1,4),(2,4),(3,4)],5)
=> 4 = 2 + 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(2,4),(3,4)],5)
=> 4 = 2 + 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4)],5)
=> 4 = 2 + 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 3 = 1 + 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(3,4)],5)
=> 4 = 2 + 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(2,4)],5)
=> 3 = 1 + 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(2,3),(2,4)],5)
=> 4 = 2 + 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3 = 1 + 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> 3 = 1 + 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(1,4),(2,3),(2,4)],5)
=> 3 = 1 + 2
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(1,4)],5)
=> 3 = 1 + 2
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 3 = 1 + 2
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ([],6)
=> 6 = 4 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 3 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> ([(2,5),(3,5),(4,5)],6)
=> 5 = 3 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4),(1,5)],6)
=> 5 = 3 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 2 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> ([(3,5),(4,5)],6)
=> 5 = 3 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 2 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> ([(2,3),(2,4),(2,5)],6)
=> 5 = 3 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 2 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(1,2),(1,3),(1,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> ([(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 2 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> ([(0,5),(1,2),(1,3),(1,4),(4,5)],6)
=> 4 = 2 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6)
=> 4 = 2 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,5),(3,4)],6)
=> 3 = 1 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(4,5)],6)
=> 5 = 3 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,4),(3,5)],6)
=> 4 = 2 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> ([(1,5),(2,5),(3,4),(3,5)],6)
=> 4 = 2 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ([(0,5),(1,2),(1,3),(1,4),(1,5)],6)
=> 4 = 2 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> 3 = 1 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> ([(3,4),(3,5)],6)
=> 5 = 3 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,5),(2,3),(2,4),(4,5)],6)
=> 4 = 2 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 2 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> 4 = 2 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(4,5)],6)
=> 3 = 1 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,5),(2,3),(2,4),(2,5)],6)
=> 4 = 2 + 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6)
=> 4 = 2 + 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> 3 = 1 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4),(3,5)],6)
=> 3 = 1 + 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> ? = 3 + 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 3 + 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> ? = 3 + 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2 + 2
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 2 + 2
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 3 + 2
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2 + 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(4,6),(5,6)],7)
=> ? = 2 + 2
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(3,6),(4,5),(4,6)],7)
=> ? = 2 + 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> ([(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(6,3)],7)
=> ? = 2 + 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5)],7)
=> ? = 2 + 2
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6)],7)
=> ? = 2 + 2
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(3,6),(4,6)],7)
=> ? = 2 + 2
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> ([(0,2),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3)],7)
=> ? = 2 + 2
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> ? = 3 + 2
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3 + 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3 + 2
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(4,6),(5,6)],7)
=> ? = 2 + 2
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(4,5),(4,6)],7)
=> ? = 2 + 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 2 + 2
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 3 + 2
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(5,6)],7)
=> ? = 2 + 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 2 + 2
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,1,0,0,0]
=> ([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(6,3)],7)
=> ? = 2 + 2
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6)],7)
=> ? = 2 + 2
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> ([(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(6,4)],7)
=> ? = 1 + 2
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6)],7)
=> ? = 2 + 2
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4)],7)
=> ? = 2 + 2
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(0,6),(1,2),(1,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ? = 1 + 2
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(4,5)],7)
=> ? = 2 + 2
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,5),(2,3),(2,4),(3,5),(3,6),(4,6)],7)
=> ? = 1 + 2
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,6),(4,6)],7)
=> ? = 2 + 2
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,1,0,0,0]
=> ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 2 + 2
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(4,6)],7)
=> ? = 2 + 2
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> ([(0,2),(0,3),(0,5),(0,6),(1,4),(1,5),(1,6),(3,4)],7)
=> ? = 2 + 2
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6)],7)
=> ? = 1 + 2
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ([(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3 + 2
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(5,6)],7)
=> ? = 2 + 2
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 2 + 2
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6)],7)
=> ? = 1 + 2
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 2 + 2
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(1,4),(1,6),(2,5),(3,4),(3,6),(6,5)],7)
=> ? = 1 + 2
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,6)],7)
=> ? = 2 + 2
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> ([(0,2),(0,3),(0,6),(1,4),(1,5),(1,6),(3,4),(3,5)],7)
=> ? = 2 + 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4)],7)
=> ? = 1 + 2
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 1 + 2
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> ([(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,6),(4,6),(5,3),(5,6)],7)
=> ? = 1 + 2
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 2 + 2
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6)],7)
=> ? = 1 + 2
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 2 + 2
Description
The width of the poset. This is the size of the poset's longest antichain, also called Dilworth number.
Matching statistic: St000058
Mp00099: Dyck paths ā€”bounce pathāŸ¶ Dyck paths
Mp00201: Dyck paths ā€”RingelāŸ¶ Permutations
Mp00239: Permutations ā€”CorteelāŸ¶ Permutations
St000058: Permutations āŸ¶ ā„¤Result quality: 65% ā—values known / values provided: 65%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [2,1] => [2,1] => 2 = 0 + 2
[1,0,1,0]
=> [1,0,1,0]
=> [3,1,2] => [3,1,2] => 3 = 1 + 2
[1,1,0,0]
=> [1,1,0,0]
=> [2,3,1] => [3,2,1] => 2 = 0 + 2
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => [4,1,2,3] => 4 = 2 + 2
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => [4,1,3,2] => 3 = 1 + 2
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => [4,2,1,3] => 3 = 1 + 2
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => [4,1,3,2] => 3 = 1 + 2
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => [4,2,3,1] => 2 = 0 + 2
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [5,1,2,3,4] => 5 = 3 + 2
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5,1,2,4,3] => 4 = 2 + 2
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5,1,3,2,4] => 4 = 2 + 2
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5,1,2,4,3] => 4 = 2 + 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5,1,3,4,2] => 3 = 1 + 2
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => 4 = 2 + 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5,2,1,4,3] => 3 = 1 + 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5,1,3,2,4] => 4 = 2 + 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5,2,1,4,3] => 3 = 1 + 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5,1,3,4,2] => 3 = 1 + 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => 3 = 1 + 2
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5,2,1,4,3] => 3 = 1 + 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5,1,3,4,2] => 3 = 1 + 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [6,1,2,3,4,5] => 6 = 4 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6,1,2,3,5,4] => 5 = 3 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6,1,2,4,3,5] => 5 = 3 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6,1,2,3,5,4] => 5 = 3 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6,1,2,4,5,3] => 4 = 2 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6,1,3,2,4,5] => 5 = 3 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,1,3,2,5,4] => 4 = 2 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6,1,2,4,3,5] => 5 = 3 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,1,3,2,5,4] => 4 = 2 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6,1,2,4,5,3] => 4 = 2 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6,1,3,4,2,5] => 4 = 2 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,1,3,2,5,4] => 4 = 2 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6,1,2,4,5,3] => 4 = 2 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6,1,3,4,5,2] => 3 = 1 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [6,2,1,3,4,5] => 5 = 3 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6,2,1,3,5,4] => 4 = 2 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6,2,1,4,3,5] => 4 = 2 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6,2,1,3,5,4] => 4 = 2 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6,2,1,4,5,3] => 3 = 1 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6,1,3,2,4,5] => 5 = 3 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,1,3,2,5,4] => 4 = 2 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6,2,1,4,3,5] => 4 = 2 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,1,3,2,5,4] => 4 = 2 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6,2,1,4,5,3] => 3 = 1 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6,1,3,4,2,5] => 4 = 2 + 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,1,3,2,5,4] => 4 = 2 + 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6,2,1,4,5,3] => 3 = 1 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6,1,3,4,5,2] => 3 = 1 + 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [7,1,2,3,4,6,5] => ? = 4 + 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [7,1,2,3,4,6,5] => ? = 4 + 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [7,1,2,3,5,6,4] => ? = 3 + 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [7,1,2,4,3,5,6] => ? = 4 + 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [7,1,2,4,3,6,5] => ? = 3 + 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [7,1,2,4,3,6,5] => ? = 3 + 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [7,1,2,3,5,6,4] => ? = 3 + 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [7,1,2,4,3,6,5] => ? = 3 + 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [7,1,2,3,5,6,4] => ? = 3 + 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [7,1,3,2,4,5,6] => ? = 4 + 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => [7,1,3,2,4,6,5] => ? = 3 + 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [7,1,3,2,5,4,6] => ? = 3 + 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => [7,1,3,2,4,6,5] => ? = 3 + 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [7,1,2,4,3,5,6] => ? = 4 + 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [7,1,2,4,3,6,5] => ? = 3 + 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [7,1,3,2,5,4,6] => ? = 3 + 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [7,1,2,4,3,6,5] => ? = 3 + 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [7,1,2,4,3,6,5] => ? = 3 + 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => [7,1,3,4,2,5,6] => ? = 3 + 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [7,1,3,4,2,6,5] => ? = 2 + 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [7,1,3,2,5,4,6] => ? = 3 + 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [7,1,3,4,2,6,5] => ? = 2 + 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [7,1,3,4,2,6,5] => ? = 2 + 2
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [7,1,3,4,2,6,5] => ? = 2 + 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => [7,2,1,3,4,6,5] => ? = 3 + 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => [7,2,1,3,4,6,5] => ? = 3 + 2
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => [7,2,1,3,5,6,4] => ? = 2 + 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => [7,2,1,4,3,5,6] => ? = 3 + 2
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => [7,2,1,4,3,6,5] => ? = 2 + 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => [7,2,1,4,3,6,5] => ? = 2 + 2
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => [7,2,1,3,5,6,4] => ? = 2 + 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => [7,2,1,4,5,3,6] => ? = 2 + 2
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => [7,2,1,4,3,6,5] => ? = 2 + 2
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => [7,2,1,3,5,6,4] => ? = 2 + 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [7,1,3,2,4,5,6] => ? = 4 + 2
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => [7,1,3,2,4,6,5] => ? = 3 + 2
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [7,1,3,2,5,4,6] => ? = 3 + 2
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => [7,1,3,2,4,6,5] => ? = 3 + 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => [7,2,1,4,3,5,6] => ? = 3 + 2
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => [7,2,1,4,3,6,5] => ? = 2 + 2
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [7,1,3,2,5,4,6] => ? = 3 + 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => [7,2,1,4,3,6,5] => ? = 3 + 2
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => [7,2,1,4,5,3,6] => ? = 2 + 2
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => [7,2,1,4,3,6,5] => ? = 2 + 2
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => [7,1,3,4,2,5,6] => ? = 3 + 2
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [7,1,3,4,2,6,5] => ? = 2 + 2
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [7,1,3,2,5,4,6] => ? = 3 + 2
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [7,1,3,4,2,6,5] => ? = 2 + 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => [7,2,1,4,5,3,6] => ? = 2 + 2
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [7,1,3,4,2,6,5] => ? = 2 + 2
Description
The order of a permutation. $\operatorname{ord}(\pi)$ is given by the minimial $k$ for which $\pi^k$ is the identity permutation.
Matching statistic: St000366
Mp00099: Dyck paths ā€”bounce pathāŸ¶ Dyck paths
Mp00201: Dyck paths ā€”RingelāŸ¶ Permutations
Mp00087: Permutations ā€”inverse first fundamental transformationāŸ¶ Permutations
St000366: Permutations āŸ¶ ā„¤Result quality: 59% ā—values known / values provided: 59%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [2,1] => [2,1] => 0
[1,0,1,0]
=> [1,0,1,0]
=> [3,1,2] => [3,2,1] => 1
[1,1,0,0]
=> [1,1,0,0]
=> [2,3,1] => [3,1,2] => 0
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => [4,3,2,1] => 2
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => [4,2,1,3] => 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => [4,3,1,2] => 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => [4,2,1,3] => 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => [4,1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [5,4,3,2,1] => 3
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5,3,2,1,4] => 2
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5,4,2,1,3] => 2
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5,3,2,1,4] => 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5,2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [5,4,3,1,2] => 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5,3,1,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5,4,2,1,3] => 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5,3,1,2,4] => 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5,2,1,3,4] => 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5,4,1,2,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5,3,1,2,4] => 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5,2,1,3,4] => 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [6,5,4,3,2,1] => 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6,4,3,2,1,5] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6,5,3,2,1,4] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6,4,3,2,1,5] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6,3,2,1,4,5] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6,5,4,2,1,3] => 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,4,2,1,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6,5,3,2,1,4] => 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,4,2,1,3,5] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6,3,2,1,4,5] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6,5,2,1,3,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,4,2,1,3,5] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6,3,2,1,4,5] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6,2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [6,5,4,3,1,2] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6,4,3,1,2,5] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6,5,3,1,2,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6,4,3,1,2,5] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6,3,1,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6,5,4,2,1,3] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,4,2,1,3,5] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6,5,3,1,2,4] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,4,2,1,3,5] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6,3,1,2,4,5] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6,5,2,1,3,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,4,2,1,3,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6,3,1,2,4,5] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6,2,1,3,4,5] => 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [7,5,4,3,2,1,6] => ? = 4
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [7,6,4,3,2,1,5] => ? = 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [7,5,4,3,2,1,6] => ? = 4
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [7,4,3,2,1,5,6] => ? = 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [7,6,5,3,2,1,4] => ? = 4
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [7,5,3,2,1,4,6] => ? = 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [7,6,4,3,2,1,5] => ? = 4
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [7,5,3,2,1,4,6] => ? = 3
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [7,4,3,2,1,5,6] => ? = 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => [7,6,3,2,1,4,5] => ? = 3
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [7,5,3,2,1,4,6] => ? = 3
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [7,4,3,2,1,5,6] => ? = 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [7,6,5,4,2,1,3] => ? = 4
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => [7,5,4,2,1,3,6] => ? = 3
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [7,6,4,2,1,3,5] => ? = 3
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => [7,5,4,2,1,3,6] => ? = 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [7,6,5,3,2,1,4] => ? = 4
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [7,5,3,2,1,4,6] => ? = 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [7,6,4,2,1,3,5] => ? = 3
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [7,5,3,2,1,4,6] => ? = 3
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => [7,6,3,2,1,4,5] => ? = 3
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [7,5,3,2,1,4,6] => ? = 3
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => [7,6,5,2,1,3,4] => ? = 3
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [7,5,2,1,3,4,6] => ? = 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [7,6,4,2,1,3,5] => ? = 3
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [7,5,2,1,3,4,6] => ? = 2
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => [7,6,3,2,1,4,5] => ? = 3
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [7,5,2,1,3,4,6] => ? = 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => [7,6,2,1,3,4,5] => ? = 2
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [7,5,2,1,3,4,6] => ? = 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => [7,5,4,3,1,2,6] => ? = 3
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => [7,6,4,3,1,2,5] => ? = 3
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => [7,5,4,3,1,2,6] => ? = 3
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => [7,4,3,1,2,5,6] => ? = 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => [7,6,5,3,1,2,4] => ? = 3
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => [7,5,3,1,2,4,6] => ? = 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => [7,6,4,3,1,2,5] => ? = 3
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => [7,5,3,1,2,4,6] => ? = 2
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => [7,4,3,1,2,5,6] => ? = 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => [7,6,3,1,2,4,5] => ? = 2
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => [7,5,3,1,2,4,6] => ? = 2
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => [7,4,3,1,2,5,6] => ? = 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [7,6,5,4,2,1,3] => ? = 4
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => [7,5,4,2,1,3,6] => ? = 3
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [7,6,4,2,1,3,5] => ? = 3
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => [7,5,4,2,1,3,6] => ? = 3
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => [7,6,5,3,1,2,4] => ? = 3
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => [7,5,3,1,2,4,6] => ? = 2
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [7,6,4,2,1,3,5] => ? = 3
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => [7,5,3,1,2,4,6] => ? = 3
Description
The number of double descents of a permutation. A double descent of a permutation $\pi$ is a position $i$ such that $\pi(i) > \pi(i+1) > \pi(i+2)$.
Matching statistic: St000371
Mp00099: Dyck paths ā€”bounce pathāŸ¶ Dyck paths
Mp00201: Dyck paths ā€”RingelāŸ¶ Permutations
Mp00087: Permutations ā€”inverse first fundamental transformationāŸ¶ Permutations
St000371: Permutations āŸ¶ ā„¤Result quality: 59% ā—values known / values provided: 59%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [2,1] => [2,1] => 0
[1,0,1,0]
=> [1,0,1,0]
=> [3,1,2] => [3,2,1] => 1
[1,1,0,0]
=> [1,1,0,0]
=> [2,3,1] => [3,1,2] => 0
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => [4,3,2,1] => 2
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => [4,2,1,3] => 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => [4,3,1,2] => 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => [4,2,1,3] => 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => [4,1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [5,4,3,2,1] => 3
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5,3,2,1,4] => 2
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5,4,2,1,3] => 2
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5,3,2,1,4] => 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5,2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [5,4,3,1,2] => 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5,3,1,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5,4,2,1,3] => 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5,3,1,2,4] => 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5,2,1,3,4] => 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5,4,1,2,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5,3,1,2,4] => 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5,2,1,3,4] => 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [6,5,4,3,2,1] => 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6,4,3,2,1,5] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6,5,3,2,1,4] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6,4,3,2,1,5] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6,3,2,1,4,5] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6,5,4,2,1,3] => 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,4,2,1,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6,5,3,2,1,4] => 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,4,2,1,3,5] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6,3,2,1,4,5] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6,5,2,1,3,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,4,2,1,3,5] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6,3,2,1,4,5] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6,2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [6,5,4,3,1,2] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6,4,3,1,2,5] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6,5,3,1,2,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6,4,3,1,2,5] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6,3,1,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6,5,4,2,1,3] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,4,2,1,3,5] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6,5,3,1,2,4] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,4,2,1,3,5] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6,3,1,2,4,5] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6,5,2,1,3,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,4,2,1,3,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6,3,1,2,4,5] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6,2,1,3,4,5] => 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [7,5,4,3,2,1,6] => ? = 4
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [7,6,4,3,2,1,5] => ? = 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [7,5,4,3,2,1,6] => ? = 4
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [7,4,3,2,1,5,6] => ? = 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [7,6,5,3,2,1,4] => ? = 4
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [7,5,3,2,1,4,6] => ? = 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [7,6,4,3,2,1,5] => ? = 4
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [7,5,3,2,1,4,6] => ? = 3
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [7,4,3,2,1,5,6] => ? = 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => [7,6,3,2,1,4,5] => ? = 3
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [7,5,3,2,1,4,6] => ? = 3
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [7,4,3,2,1,5,6] => ? = 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [7,6,5,4,2,1,3] => ? = 4
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => [7,5,4,2,1,3,6] => ? = 3
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [7,6,4,2,1,3,5] => ? = 3
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => [7,5,4,2,1,3,6] => ? = 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [7,6,5,3,2,1,4] => ? = 4
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [7,5,3,2,1,4,6] => ? = 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [7,6,4,2,1,3,5] => ? = 3
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [7,5,3,2,1,4,6] => ? = 3
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => [7,6,3,2,1,4,5] => ? = 3
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [7,5,3,2,1,4,6] => ? = 3
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => [7,6,5,2,1,3,4] => ? = 3
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [7,5,2,1,3,4,6] => ? = 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [7,6,4,2,1,3,5] => ? = 3
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [7,5,2,1,3,4,6] => ? = 2
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => [7,6,3,2,1,4,5] => ? = 3
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [7,5,2,1,3,4,6] => ? = 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => [7,6,2,1,3,4,5] => ? = 2
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [7,5,2,1,3,4,6] => ? = 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => [7,5,4,3,1,2,6] => ? = 3
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => [7,6,4,3,1,2,5] => ? = 3
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => [7,5,4,3,1,2,6] => ? = 3
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => [7,4,3,1,2,5,6] => ? = 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => [7,6,5,3,1,2,4] => ? = 3
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => [7,5,3,1,2,4,6] => ? = 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => [7,6,4,3,1,2,5] => ? = 3
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => [7,5,3,1,2,4,6] => ? = 2
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => [7,4,3,1,2,5,6] => ? = 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => [7,6,3,1,2,4,5] => ? = 2
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => [7,5,3,1,2,4,6] => ? = 2
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => [7,4,3,1,2,5,6] => ? = 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [7,6,5,4,2,1,3] => ? = 4
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => [7,5,4,2,1,3,6] => ? = 3
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [7,6,4,2,1,3,5] => ? = 3
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => [7,5,4,2,1,3,6] => ? = 3
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => [7,6,5,3,1,2,4] => ? = 3
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => [7,5,3,1,2,4,6] => ? = 2
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [7,6,4,2,1,3,5] => ? = 3
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => [7,5,3,1,2,4,6] => ? = 3
Description
The number of mid points of decreasing subsequences of length 3 in a permutation. For a permutation $\pi$ of $\{1,\ldots,n\}$, this is the number of indices $j$ such that there exist indices $i,k$ with $i < j < k$ and $\pi(i) > \pi(j) > \pi(k)$. In other words, this is the number of indices that are neither left-to-right maxima nor right-to-left minima. This statistic can also be expressed as the number of occurrences of the mesh pattern ([3,2,1], {(0,2),(0,3),(2,0),(3,0)}): the shading fixes the first and the last element of the decreasing subsequence. See also [[St000119]].
The following 163 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000662The staircase size of the code of a permutation. St000052The number of valleys of a Dyck path not on the x-axis. St000924The number of topologically connected components of a perfect matching. St000996The number of exclusive left-to-right maxima of a permutation. St001812The biclique partition number of a graph. St000711The number of big exceedences of a permutation. St000245The number of ascents of a permutation. St000672The number of minimal elements in Bruhat order not less than the permutation. St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St000374The number of exclusive right-to-left minima of a permutation. St000703The number of deficiencies of a permutation. St000451The length of the longest pattern of the form k 1 2. St001004The number of indices that are either left-to-right maxima or right-to-left minima. St000308The height of the tree associated to a permutation. St000141The maximum drop size of a permutation. St000731The number of double exceedences of a permutation. St000007The number of saliances of the permutation. St001330The hat guessing number of a graph. St000359The number of occurrences of the pattern 23-1. St000354The number of recoils of a permutation. St000355The number of occurrences of the pattern 21-3. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St001489The maximum of the number of descents and the number of inverse descents. St000470The number of runs in a permutation. St000542The number of left-to-right-minima of a permutation. St000619The number of cyclic descents of a permutation. St000888The maximal sum of entries on a diagonal of an alternating sign matrix. St000892The maximal number of nonzero entries on a diagonal of an alternating sign matrix. St000317The cycle descent number of a permutation. St000358The number of occurrences of the pattern 31-2. St000732The number of double deficiencies of a permutation. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001727The number of invisible inversions of a permutation. St000015The number of peaks of a Dyck path. St000316The number of non-left-to-right-maxima of a permutation. St000702The number of weak deficiencies of a permutation. St000991The number of right-to-left minima of a permutation. St001589The nesting number of a perfect matching. St000021The number of descents of a permutation. St000039The number of crossings of a permutation. St000053The number of valleys of the Dyck path. St000083The number of left oriented leafs of a binary tree except the first one. St000155The number of exceedances (also excedences) of a permutation. St000217The number of occurrences of the pattern 312 in a permutation. St000292The number of ascents of a binary word. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000331The number of upper interactions of a Dyck path. St000436The number of occurrences of the pattern 231 or of the pattern 321 in a permutation. St000710The number of big deficiencies of a permutation. St000834The number of right outer peaks of a permutation. St000871The number of very big ascents of a permutation. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St000989The number of final rises of a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001152The number of pairs with even minimum in a perfect matching. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St001298The number of repeated entries in the Lehmer code of a permutation. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St000035The number of left outer peaks of a permutation. St000062The length of the longest increasing subsequence of the permutation. St000080The rank of the poset. St000153The number of adjacent cycles of a permutation. St000157The number of descents of a standard tableau. St000164The number of short pairs. St000181The number of connected components of the Hasse diagram for the poset. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000213The number of weak exceedances (also weak excedences) of a permutation. St000216The absolute length of a permutation. St000239The number of small weak excedances. St000291The number of descents of a binary word. St000314The number of left-to-right-maxima of a permutation. St000325The width of the tree associated to a permutation. St000328The maximum number of child nodes in a tree. St000390The number of runs of ones in a binary word. St000443The number of long tunnels of a Dyck path. St000653The last descent of a permutation. St000742The number of big ascents of a permutation after prepending zero. St000809The reduced reflection length of the permutation. St000829The Ulam distance of a permutation to the identity permutation. St000864The number of circled entries of the shifted recording tableau of a permutation. St001046The maximal number of arcs nesting a given arc of a perfect matching. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001077The prefix exchange distance of a permutation. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{nāˆ’1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001497The position of the largest weak excedence of a permutation. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001590The crossing number of a perfect matching. St001671Haglund's hag of a permutation. St001726The number of visible inversions of a permutation. St000166The depth minus 1 of an ordered tree. St000236The number of cyclical small weak excedances. St000442The maximal area to the right of an up step of a Dyck path. St000485The length of the longest cycle of a permutation. St000673The number of non-fixed points of a permutation. St000720The size of the largest partition in the oscillating tableau corresponding to the perfect matching. St000990The first ascent of a permutation. St001005The number of indices for a permutation that are either left-to-right maxima or right-to-left minima but not both. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001180Number of indecomposable injective modules with projective dimension at most 1. St001183The maximum of $projdim(S)+injdim(S)$ over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001464The number of bases of the positroid corresponding to the permutation, with all fixed points counterclockwise. St000094The depth of an ordered tree. St001182Number of indecomposable injective modules with codominant dimension at least two in the corresponding Nakayama algebra. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001668The number of points of the poset minus the width of the poset. St000898The number of maximal entries in the last diagonal of the monotone triangle. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000455The second largest eigenvalue of a graph if it is integral. St001720The minimal length of a chain of small intervals in a lattice. St001863The number of weak excedances of a signed permutation. St001889The size of the connectivity set of a signed permutation. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001769The reflection length of a signed permutation. St001861The number of Bruhat lower covers of a permutation. St001864The number of excedances of a signed permutation. St001894The depth of a signed permutation. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001896The number of right descents of a signed permutations. St001712The number of natural descents of a standard Young tableau. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001462The number of factors of a standard tableaux under concatenation. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001811The Castelnuovo-Mumford regularity of a permutation. St001821The sorting index of a signed permutation. St001935The number of ascents in a parking function. St001946The number of descents in a parking function. St001960The number of descents of a permutation minus one if its first entry is not one. St000670The reversal length of a permutation. St000942The number of critical left to right maxima of the parking functions. St000983The length of the longest alternating subword. St001773The number of minimal elements in Bruhat order not less than the signed permutation. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St000884The number of isolated descents of a permutation. St000994The number of cycle peaks and the number of cycle valleys of a permutation. St001624The breadth of a lattice. St001877Number of indecomposable injective modules with projective dimension 2.