searching the database
Your data matches 5 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001067
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St001067: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St001067: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [2,1] => [1,1,0,0]
=> [1,1,0,0]
=> 0
[1,1,0,0]
=> [1,2] => [1,0,1,0]
=> [1,0,1,0]
=> 1
[1,0,1,0,1,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
Description
The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra.
Matching statistic: St001223
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St001223: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St001223: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [2,1] => [1,1,0,0]
=> [1,1,0,0]
=> 0
[1,1,0,0]
=> [1,2] => [1,0,1,0]
=> [1,0,1,0]
=> 1
[1,0,1,0,1,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
Description
Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless.
Matching statistic: St000932
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000932: Dyck paths ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000932: Dyck paths ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> [1,0]
=> ? = 0
[1,0,1,0]
=> [2,1] => [1,1,0,0]
=> [1,1,0,0]
=> 0
[1,1,0,0]
=> [1,2] => [1,0,1,0]
=> [1,0,1,0]
=> 1
[1,0,1,0,1,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
Description
The number of occurrences of the pattern UDU in a Dyck path.
The number of Dyck paths with statistic value 0 are counted by the Motzkin numbers [1].
Matching statistic: St001232
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 17% ●values known / values provided: 33%●distinct values known / distinct values provided: 17%
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 17% ●values known / values provided: 33%●distinct values known / distinct values provided: 17%
Values
[1,0]
=> [1,1,0,0]
=> [1,2] => [1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> ? = 1 + 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> ? = 1 + 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> ? = 0 + 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> ? = 2 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [1,1,1,0,1,0,0,0,1,0]
=> ? = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> ? = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> ? = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> ? = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> ? = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> ? = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> ? = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [4,5,3,2,1,6] => [1,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [5,3,4,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [4,3,5,2,1,6] => [1,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,1,6] => [1,1,1,0,1,0,1,0,0,0,1,0]
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,3,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,1,6] => [1,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [5,3,2,4,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,1,6] => [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,1,6] => [1,1,1,0,1,0,0,1,0,0,1,0]
=> ? = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,1,6] => [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,1,6] => [1,1,1,0,0,1,0,1,0,0,1,0]
=> ? = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => [1,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1,2,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [4,5,3,1,2,6] => [1,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [5,3,4,1,2,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [4,3,5,1,2,6] => [1,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,4,5,1,2,6] => [1,1,1,0,1,0,1,0,0,0,1,0]
=> ? = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,3,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,5,2,1,3,6] => [1,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,3,2,1,4,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,3,2,1,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,2,1,5,6] => [1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,3,1,4,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [4,2,3,1,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,2,4,1,5,6] => [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6] => [1,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [5,4,1,2,3,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,5,1,2,3,6] => [1,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [5,3,1,2,4,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,3,1,2,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 0 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [3,4,1,2,5,6] => [1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 1 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [5,2,1,3,4,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [4,2,1,3,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 0 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [3,2,1,4,5,6] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6] => [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 2 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,1,2,3,4,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [4,1,2,3,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [3,1,2,4,5,6] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,2,1,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [5,6,4,3,2,1,7] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [6,4,5,3,2,1,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [5,4,6,3,2,1,7] => [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [4,5,6,3,2,1,7] => [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [6,5,3,4,2,1,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [5,6,3,4,2,1,7] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [6,4,3,5,2,1,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [5,4,3,6,2,1,7] => [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [4,5,3,6,2,1,7] => [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [6,3,4,5,2,1,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [5,3,4,6,2,1,7] => [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [4,3,5,6,2,1,7] => [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,2,1,7] => [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [6,5,4,2,3,1,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [6,4,5,2,3,1,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [6,5,3,2,4,1,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [6,4,3,2,5,1,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [6,3,4,2,5,1,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [6,5,2,3,4,1,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [6,4,2,3,5,1,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [6,3,2,4,5,1,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [6,2,3,4,5,1,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,1,2,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [6,4,5,3,1,2,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [6,5,3,4,1,2,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [6,4,3,5,1,2,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [6,3,4,5,1,2,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [6,5,4,2,1,3,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> [6,4,5,2,1,3,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [6,5,3,2,1,4,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [6,4,3,2,1,5,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [6,3,4,2,1,5,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [6,5,2,3,1,4,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> [6,4,2,3,1,5,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [6,3,2,4,1,5,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St001330
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 13% ●values known / values provided: 13%●distinct values known / distinct values provided: 100%
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 13% ●values known / values provided: 13%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 2 = 0 + 2
[1,0,1,0]
=> [3,1,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[1,1,0,0]
=> [2,3,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 1 + 2
[1,0,1,0,1,0]
=> [4,1,2,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,1,0,0]
=> [3,1,4,2] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[1,1,0,0,1,0]
=> [2,4,1,3] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 2
[1,1,0,1,0,0]
=> [4,3,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,1,0,0,0]
=> [2,3,4,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 2 + 2
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 3 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,5,3,1,2,4] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [4,1,2,6,3,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [5,1,2,6,3,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [4,1,2,6,5,3] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6,4,3,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [5,3,1,2,6,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [5,4,1,2,6,3] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6,5,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [6,2,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6,5,2,1,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6,4,2,1,3,5] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [5,2,1,3,6,4] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6,5,4,2,1,3] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [3,1,6,2,4,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [3,1,6,5,2,4] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [4,1,6,2,3,5] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 0 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [6,1,5,2,3,4] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [4,1,6,5,2,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [3,1,6,4,2,5] => ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [3,1,5,2,6,4] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [5,4,1,6,2,3] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [3,1,6,5,4,2] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [6,3,2,1,4,5] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [6,5,3,2,1,4] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [4,2,1,6,3,5] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ? = 0 + 2
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [5,2,1,6,3,4] => ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [4,2,1,6,5,3] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ? = 1 + 2
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [4,3,1,6,2,5] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [5,3,1,6,2,4] => ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [4,1,5,2,6,3] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [4,3,1,6,5,2] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 2
[1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => [6,4,3,2,1,5] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => [5,3,2,1,6,4] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => [5,4,2,1,6,3] => ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => [5,4,3,1,6,2] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 2
[1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 4 + 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => [7,1,2,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [7,6,1,2,3,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [7,5,1,2,3,4,6] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => [6,1,2,3,4,7,5] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => [5,1,2,3,7,4,6] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => [4,1,2,7,3,5,6] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [7,1,4,2,6,3,5] => [4,1,2,6,3,7,5] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 2 = 0 + 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [7,3,1,2,4,5,6] => [3,1,7,2,4,5,6] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [7,3,1,2,6,4,5] => [3,1,6,2,4,7,5] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [7,3,1,5,2,4,6] => [3,1,5,2,7,4,6] => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 0 + 2
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 5 + 2
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!