Your data matches 71 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001225: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 0
[1,0,1,0]
=> 1
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 2
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 3
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> 2
Description
The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St000019: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [2,1] => 1
[1,1,0,0]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [2,3,1] => 2
[1,0,1,1,0,0]
=> [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,3,2] => 1
[1,1,0,1,0,0]
=> [3,1,2] => 2
[1,1,1,0,0,0]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 3
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 2
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => 3
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 2
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => 3
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => 3
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => 4
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => 4
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => 3
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => 4
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => 4
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => 4
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => 4
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => 3
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => 4
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => 2
Description
The cardinality of the support of a permutation. A permutation $\sigma$ may be written as a product $\sigma = s_{i_1}\dots s_{i_k}$ with $k$ minimal, where $s_i = (i,i+1)$ denotes the simple transposition swapping the entries in positions $i$ and $i+1$. The set of indices $\{i_1,\dots,i_k\}$ is the '''support''' of $\sigma$ and independent of the chosen way to write $\sigma$ as such a product. See [2], Definition 1 and Proposition 10. The '''connectivity set''' of $\sigma$ of length $n$ is the set of indices $1 \leq i < n$ such that $\sigma(k) < i$ for all $k < i$. Thus, the connectivity set is the complement of the support.
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
St000067: Alternating sign matrices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [[1]]
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> 1
[1,1,0,0]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> 2
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> 2
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> 3
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> 3
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> 3
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 2
Description
The inversion number of the alternating sign matrix. If we denote the entries of the alternating sign matrix as $a_{i,j}$, the inversion number is defined as $$\sum_{i > k}\sum_{j < \ell} a_{i,j}a_{k,\ell}.$$ When restricted to permutation matrices, this gives the usual inversion number of the permutation.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00239: Permutations CorteelPermutations
St000316: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => 1
[1,1,0,0]
=> [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [2,3,1] => [3,2,1] => 2
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => 1
[1,1,0,1,0,0]
=> [3,1,2] => [3,1,2] => 2
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,2,3,1] => 3
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => 2
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [4,2,1,3] => 3
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,3,2] => 2
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [4,1,3,2] => 3
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => 3
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,1,2,4] => 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,2,3] => 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => 4
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => 4
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => 3
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [5,2,1,4,3] => 4
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [5,2,4,3,1] => 4
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [5,1,3,4,2] => 4
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [4,1,3,2,5] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [5,3,2,4,1] => 4
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [5,4,3,2,1] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [4,3,2,1,5] => 3
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,1,2,5,4] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [5,1,3,2,4] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [5,3,2,1,4] => 4
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [3,1,2,4,5] => 2
Description
The number of non-left-to-right-maxima of a permutation. An integer $\sigma_i$ in the one-line notation of a permutation $\sigma$ is a **non-left-to-right-maximum** if there exists a $j < i$ such that $\sigma_j > \sigma_i$.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00160: Permutations graph of inversionsGraphs
St000987: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => ([],1)
=> 0
[1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> 1
[1,1,0,0]
=> [1,2] => ([],2)
=> 0
[1,0,1,0,1,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 2
[1,0,1,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> 1
[1,1,0,0,1,0]
=> [1,3,2] => ([(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 3
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => ([(2,3)],4)
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 3
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => ([(2,3)],4)
=> 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> 2
Description
The number of positive eigenvalues of the Laplacian matrix of the graph. This is the number of vertices minus the number of connected components of the graph.
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
St001227: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 3
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
Description
The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra.
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00066: Permutations inversePermutations
St000240: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 1 = 0 + 1
[1,0,1,0]
=> [1,2] => [1,2] => 2 = 1 + 1
[1,1,0,0]
=> [2,1] => [2,1] => 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 3 = 2 + 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 2 = 1 + 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => 3 = 2 + 1
[1,1,1,0,0,0]
=> [3,1,2] => [2,3,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 4 = 3 + 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => 3 = 2 + 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => 3 = 2 + 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,2,3] => 4 = 3 + 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,3,4,2] => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 3 = 2 + 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1,2,4] => 4 = 3 + 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => 4 = 3 + 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,1,4,2] => 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [2,3,1,4] => 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [3,4,1,2] => 4 = 3 + 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [2,3,4,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 5 = 4 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => 4 = 3 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => 4 = 3 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => 5 = 4 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,4,5,3] => 3 = 2 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 4 = 3 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 3 = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => 5 = 4 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => 5 = 4 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,4,2,5,3] => 4 = 3 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,3,4,2,5] => 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,3,5,2,4] => 4 = 3 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,4,5,2,3] => 5 = 4 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,3,4,5,2] => 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 4 = 3 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 3 = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 3 = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => 4 = 3 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,4,5,3] => 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => 5 = 4 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => 4 = 3 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => 5 = 4 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 5 = 4 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,1,2,5,3] => 4 = 3 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [3,1,4,2,5] => 4 = 3 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [3,1,5,2,4] => 5 = 4 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [4,1,5,2,3] => 5 = 4 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [3,1,4,5,2] => 3 = 2 + 1
Description
The number of indices that are not small excedances. A small excedance is an index $i$ for which $\pi_i = i+1$.
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00327: Dyck paths inverse Kreweras complementDyck paths
St001291: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 5 = 4 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 5 = 4 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 5 = 4 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 5 = 4 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 4 = 3 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 5 = 4 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 5 = 4 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 5 = 4 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 5 = 4 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
Description
The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. Let $A$ be the Nakayama algebra associated to a Dyck path as given in [[DyckPaths/NakayamaAlgebras]]. This statistics is the number of indecomposable summands of $D(A) \otimes D(A)$, where $D(A)$ is the natural dual of $A$.
Mp00229: Dyck paths Delest-ViennotDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> []
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1]
=> 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> []
=> 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 2
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> 1
[1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> 2
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 3
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 3
[1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 2
Description
The length of the partition.
Matching statistic: St000024
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00236: Permutations Clarke-Steingrimsson-Zeng inversePermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St000024: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1,0]
=> 0
[1,0,1,0]
=> [2,1] => [2,1] => [1,1,0,0]
=> 1
[1,1,0,0]
=> [1,2] => [1,2] => [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [3,1,2] => [3,1,2] => [1,1,1,0,0,0]
=> 2
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 3
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> 3
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> 3
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> 3
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [4,3,1,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [4,1,3,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 2
Description
The number of double up and double down steps of a Dyck path. In other words, this is the number of double rises (and, equivalently, the number of double falls) of a Dyck path.
The following 61 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000141The maximum drop size of a permutation. St000147The largest part of an integer partition. St000394The sum of the heights of the peaks of a Dyck path minus the number of peaks. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001300The rank of the boundary operator in degree 1 of the chain complex of the order complex of the poset. St000054The first entry of the permutation. St000093The cardinality of a maximal independent set of vertices of a graph. St000443The number of long tunnels of a Dyck path. St000740The last entry of a permutation. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001088Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001497The position of the largest weak excedence of a permutation. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001480The number of simple summands of the module J^2/J^3. St000957The number of Bruhat lower covers of a permutation. St000216The absolute length of a permutation. St000288The number of ones in a binary word. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000653The last descent of a permutation. St000809The reduced reflection length of the permutation. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St000356The number of occurrences of the pattern 13-2. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St001082The number of boxed occurrences of 123 in a permutation. St001682The number of distinct positions of the pattern letter 1 in occurrences of 123 in a permutation. St000840The number of closers smaller than the largest opener in a perfect matching. St001645The pebbling number of a connected graph. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St000673The number of non-fixed points of a permutation. St000242The number of indices that are not cyclical small weak excedances. St000358The number of occurrences of the pattern 31-2. St000672The number of minimal elements in Bruhat order not less than the permutation. St000199The column of the unique '1' in the last row of the alternating sign matrix. St000200The row of the unique '1' in the last column of the alternating sign matrix. St000238The number of indices that are not small weak excedances. St000235The number of indices that are not cyclical small weak excedances. St001182Number of indecomposable injective modules with codominant dimension at least two in the corresponding Nakayama algebra. St000327The number of cover relations in a poset. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000066The column of the unique '1' in the first row of the alternating sign matrix. St001861The number of Bruhat lower covers of a permutation. St000896The number of zeros on the main diagonal of an alternating sign matrix. St001596The number of two-by-two squares inside a skew partition. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000133The "bounce" of a permutation. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001811The Castelnuovo-Mumford regularity of a permutation. St001877Number of indecomposable injective modules with projective dimension 2. St001960The number of descents of a permutation minus one if its first entry is not one. St000155The number of exceedances (also excedences) of a permutation. St000213The number of weak exceedances (also weak excedences) of a permutation. St001555The order of a signed permutation. St001014Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path. St001015Number of indecomposable injective modules with codominant dimension equal to one in the Nakayama algebra corresponding to the Dyck path. St001016Number of indecomposable injective modules with codominant dimension at most 1 in the Nakayama algebra corresponding to the Dyck path. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.