Your data matches 509 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00059: Permutations Robinson-Schensted insertion tableauStandard tableaux
St000009: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [[1]]
=> 0
[1,0,1,0]
=> [2,1] => [[1],[2]]
=> 0
[1,1,0,0]
=> [1,2] => [[1,2]]
=> 1
[1,0,1,0,1,0]
=> [3,2,1] => [[1],[2],[3]]
=> 0
[1,0,1,1,0,0]
=> [2,3,1] => [[1,3],[2]]
=> 1
[1,1,0,0,1,0]
=> [3,1,2] => [[1,2],[3]]
=> 2
[1,1,0,1,0,0]
=> [2,1,3] => [[1,3],[2]]
=> 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [[1],[2],[3],[4]]
=> 0
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [[1,4],[2],[3]]
=> 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [[1,3],[2],[4]]
=> 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [[1,4],[2],[3]]
=> 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [[1,2],[3],[4]]
=> 3
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [[1,3],[2],[4]]
=> 2
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [[1,4],[2],[3]]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [[1],[2],[3],[4],[5]]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [[1,5],[2],[3],[4]]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [[1,4],[2],[3],[5]]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [[1,5],[2],[3],[4]]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [[1,3],[2],[4],[5]]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [[1,4],[2],[3],[5]]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [[1,5],[2],[3],[4]]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [[1,2],[3],[4],[5]]
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [[1,3],[2],[4],[5]]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [[1,4],[2],[3],[5]]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [[1,5],[2],[3],[4]]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [[1],[2],[3],[4],[5],[6]]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => [[1,6],[2],[3],[4],[5]]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => [[1,5],[2],[3],[4],[6]]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => [[1,6],[2],[3],[4],[5]]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => [[1,4],[2],[3],[5],[6]]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => [[1,5],[2],[3],[4],[6]]
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,6,2,1] => [[1,6],[2],[3],[4],[5]]
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,3,1] => [[1,3],[2],[4],[5],[6]]
=> 4
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,4,1] => [[1,4],[2],[3],[5],[6]]
=> 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,5,1] => [[1,5],[2],[3],[4],[6]]
=> 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,6,1] => [[1,6],[2],[3],[4],[5]]
=> 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1,2] => [[1,2],[3],[4],[5],[6]]
=> 5
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,3] => [[1,3],[2],[4],[5],[6]]
=> 4
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1,4] => [[1,4],[2],[3],[5],[6]]
=> 3
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,1,5] => [[1,5],[2],[3],[4],[6]]
=> 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,6] => [[1,6],[2],[3],[4],[5]]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1] => [[1],[2],[3],[4],[5],[6],[7]]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,3,2,1] => [[1,7],[2],[3],[4],[5],[6]]
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,3,2,1] => [[1,6],[2],[3],[4],[5],[7]]
=> 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,7,4,3,2,1] => [[1,7],[2],[3],[4],[5],[6]]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,3,2,1] => [[1,5],[2],[3],[4],[6],[7]]
=> 3
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,5,4,6,3,2,1] => [[1,6],[2],[3],[4],[5],[7]]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,7,3,2,1] => [[1,7],[2],[3],[4],[5],[6]]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,4,2,1] => [[1,4],[2],[3],[5],[6],[7]]
=> 4
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,5,2,1] => [[1,5],[2],[3],[4],[6],[7]]
=> 3
Description
The charge of a standard tableau.
Mp00327: Dyck paths inverse Kreweras complementDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> []
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> []
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> 0
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 2
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [2]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 3
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> 4
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,2]
=> 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1]
=> 5
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2]
=> 4
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,3,3]
=> 3
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1]
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1]
=> 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1]
=> 3
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [2,2]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [3]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1]
=> 4
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [2,2,2]
=> 3
Description
The length of the partition.
Mp00327: Dyck paths inverse Kreweras complementDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
St000012: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 4
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> 4
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> 3
Description
The area of a Dyck path. This is the number of complete squares in the integer lattice which are below the path and above the x-axis. The 'half-squares' directly above the axis do not contribute to this statistic. 1. Dyck paths are bijection with '''area sequences''' $(a_1,\ldots,a_n)$ such that $a_1 = 0, a_{k+1} \leq a_k + 1$. 2. The generating function $\mathbf{D}_n(q) = \sum_{D \in \mathfrak{D}_n} q^{\operatorname{area}(D)}$ satisfy the recurrence $$\mathbf{D}_{n+1}(q) = \sum q^k \mathbf{D}_k(q) \mathbf{D}_{n-k}(q).$$ 3. The area is equidistributed with [[St000005]] and [[St000006]]. Pairs of these statistics play an important role in the theory of $q,t$-Catalan numbers.
Mp00296: Dyck paths Knuth-KrattenthalerDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> []
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> []
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> 0
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> 2
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 3
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,1,1]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [2,1,1]
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,1,1,1]
=> 4
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [3,1,1,1]
=> 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,1,1,1]
=> 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [5,1,1,1,1]
=> 5
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [4,1,1,1,1]
=> 4
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,1,1,1]
=> 3
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,1,1,1,1]
=> 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1]
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [2,1]
=> 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [3,1,1]
=> 3
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [2,1,1]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [4,1,1,1]
=> 4
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [3,1,1,1]
=> 3
Description
The largest part of an integer partition.
Mp00327: Dyck paths inverse Kreweras complementDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St000160: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> []
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> []
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> 0
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 2
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [2]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 3
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> 4
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,2]
=> 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1]
=> 5
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2]
=> 4
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,3,3]
=> 3
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1]
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1]
=> 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1]
=> 3
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [2,2]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [3]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1]
=> 4
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [2,2,2]
=> 3
Description
The multiplicity of the smallest part of a partition. This counts the number of occurrences of the smallest part $spt(\lambda)$ of a partition $\lambda$. The sum $spt(n) = \sum_{\lambda \vdash n} spt(\lambda)$ satisfies the congruences \begin{align*} spt(5n+4) &\equiv 0\quad \pmod{5}\\\ spt(7n+5) &\equiv 0\quad \pmod{7}\\\ spt(13n+6) &\equiv 0\quad \pmod{13}, \end{align*} analogous to those of the counting function of partitions, see [1] and [2].
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00070: Permutations Robinson-Schensted recording tableauStandard tableaux
St000169: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [[1]]
=> 0
[1,0,1,0]
=> [1,2] => [[1,2]]
=> 0
[1,1,0,0]
=> [2,1] => [[1],[2]]
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [[1,2,3]]
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [[1,2],[3]]
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [[1,3],[2]]
=> 2
[1,1,0,1,0,0]
=> [2,3,1] => [[1,2],[3]]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [[1,2,3,4]]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [[1,2,3],[4]]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [[1,2,4],[3]]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [[1,2,3],[4]]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [[1,3,4],[2]]
=> 3
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [[1,2,4],[3]]
=> 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [[1,2,3],[4]]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [[1,2,3,5],[4]]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [[1,2,3,4],[5]]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [[1,2,4,5],[3]]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [[1,2,3,5],[4]]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [[1,2,3,4],[5]]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [[1,3,4,5],[2]]
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [[1,2,4,5],[3]]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [[1,2,3,5],[4]]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [[1,2,3,4],[5]]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [[1,2,3,4,5,6]]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [[1,2,3,4,5],[6]]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [[1,2,3,4,6],[5]]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [[1,2,3,4,5],[6]]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [[1,2,3,5,6],[4]]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => [[1,2,3,4,6],[5]]
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [[1,2,3,4,5],[6]]
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [[1,2,4,5,6],[3]]
=> 4
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,4,2,5,6] => [[1,2,3,5,6],[4]]
=> 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,2,6] => [[1,2,3,4,6],[5]]
=> 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => [[1,2,3,4,5],[6]]
=> 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => [[1,3,4,5,6],[2]]
=> 5
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6] => [[1,2,4,5,6],[3]]
=> 4
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,1,5,6] => [[1,2,3,5,6],[4]]
=> 3
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,1,6] => [[1,2,3,4,6],[5]]
=> 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => [[1,2,3,4,5],[6]]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7] => [[1,2,3,4,5,6,7]]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => [[1,2,3,4,5,6],[7]]
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,7] => [[1,2,3,4,5,7],[6]]
=> 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [[1,2,3,4,5,6],[7]]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => [[1,2,3,4,6,7],[5]]
=> 3
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => [[1,2,3,4,5,7],[6]]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => [[1,2,3,4,5,6],[7]]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => [[1,2,3,5,6,7],[4]]
=> 4
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => [[1,2,3,4,6,7],[5]]
=> 3
Description
The cocharge of a standard tableau. The '''cocharge''' of a standard tableau $T$, denoted $\mathrm{cc}(T)$, is defined to be the cocharge of the reading word of the tableau. The cocharge of a permutation $w_1 w_2\cdots w_n$ can be computed by the following algorithm: 1) Starting from $w_n$, scan the entries right-to-left until finding the entry $1$ with a superscript $0$. 2) Continue scanning until the $2$ is found, and label this with a superscript $1$. Then scan until the $3$ is found, labeling with a $2$, and so on, incrementing the label each time, until the beginning of the word is reached. Then go back to the end and scan again from right to left, and *do not* increment the superscript label for the first number found in the next scan. Then continue scanning and labeling, each time incrementing the superscript only if we have not cycled around the word since the last labeling. 3) The cocharge is defined as the sum of the superscript labels on the letters.
Mp00327: Dyck paths inverse Kreweras complementDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
St000394: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 4
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> 4
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> 3
Description
The sum of the heights of the peaks of a Dyck path minus the number of peaks.
Mp00296: Dyck paths Knuth-KrattenthalerDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St000533: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> []
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> []
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> 0
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> 2
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 3
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,1,1]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [2,1,1]
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,1,1,1]
=> 4
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [3,1,1,1]
=> 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,1,1,1]
=> 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [5,1,1,1,1]
=> 5
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [4,1,1,1,1]
=> 4
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,1,1,1]
=> 3
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,1,1,1,1]
=> 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1]
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [2,1]
=> 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [3,1,1]
=> 3
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [2,1,1]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [4,1,1,1]
=> 4
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [3,1,1,1]
=> 3
Description
The minimum of the number of parts and the size of the first part of an integer partition. This is also an upper bound on the maximal number of non-attacking rooks that can be placed on the Ferrers board.
Mp00327: Dyck paths inverse Kreweras complementDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St000548: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> []
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> []
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> 0
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 2
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [2]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 3
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> 4
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,2]
=> 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1]
=> 5
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2]
=> 4
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,3,3]
=> 3
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1]
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1]
=> 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1]
=> 3
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [2,2]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [3]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1]
=> 4
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [2,2,2]
=> 3
Description
The number of different non-empty partial sums of an integer partition.
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00099: Dyck paths bounce pathDyck paths
St001161: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> 3
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> 4
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> 3
Description
The major index north count of a Dyck path. The descent set $\operatorname{des}(D)$ of a Dyck path $D = D_1 \cdots D_{2n}$ with $D_i \in \{N,E\}$ is given by all indices $i$ such that $D_i = E$ and $D_{i+1} = N$. This is, the positions of the valleys of $D$. The '''major index''' of a Dyck path is then the sum of the positions of the valleys, $\sum_{i \in \operatorname{des}(D)} i$, see [[St000027]]. The '''major index north count''' is given by $\sum_{i \in \operatorname{des}(D)} \#\{ j \leq i \mid D_j = N\}$.
The following 499 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001280The number of parts of an integer partition that are at least two. St001697The shifted natural comajor index of a standard Young tableau. St000032The number of elements smaller than the given Dyck path in the Tamari Order. St000058The order of a permutation. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000839The largest opener of a set partition. St001814The number of partitions interlacing the given partition. St000008The major index of the composition. St000024The number of double up and double down steps of a Dyck path. St000025The number of initial rises of a Dyck path. St000053The number of valleys of the Dyck path. St000059The inversion number of a standard tableau as defined by Haglund and Stevens. St000081The number of edges of a graph. St000171The degree of the graph. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000211The rank of the set partition. St000290The major index of a binary word. St000293The number of inversions of a binary word. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000330The (standard) major index of a standard tableau. St000378The diagonal inversion number of an integer partition. St000645The sum of the areas of the rectangles formed by two consecutive peaks and the valley in between. St000676The number of odd rises of a Dyck path. St000692Babson and Steingrímsson's statistic of a permutation. St000766The number of inversions of an integer composition. St000845The maximal number of elements covered by an element in a poset. St000984The number of boxes below precisely one peak. St000987The number of positive eigenvalues of the Laplacian matrix of the graph. St000996The number of exclusive left-to-right maxima of a permutation. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001090The number of pop-stack-sorts needed to sort a permutation. St001094The depth index of a set partition. St001176The size of a partition minus its first part. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001197The global dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001436The index of a given binary word in the lex-order among all its cyclic shifts. St001479The number of bridges of a graph. St001485The modular major index of a binary word. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001721The degree of a binary word. St001759The Rajchgot index of a permutation. St001826The maximal number of leaves on a vertex of a graph. St001910The height of the middle non-run of a Dyck path. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St000011The number of touch points (or returns) of a Dyck path. St000013The height of a Dyck path. St000026The position of the first return of a Dyck path. St000278The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. St000381The largest part of an integer composition. St000468The Hosoya index of a graph. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St000686The finitistic dominant dimension of a Dyck path. St000734The last entry in the first row of a standard tableau. St000738The first entry in the last row of a standard tableau. St000808The number of up steps of the associated bargraph. St000971The smallest closer of a set partition. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001088Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows: St001365The number of lattice paths of the same length weakly above the path given by a binary word. St001389The number of partitions of the same length below the given integer partition. St001419The length of the longest palindromic factor beginning with a one of a binary word. St001674The number of vertices of the largest induced star graph in the graph. St001717The largest size of an interval in a poset. St001725The harmonious chromatic number of a graph. St001733The number of weak left to right maxima of a Dyck path. St001784The minimum of the smallest closer and the second element of the block containing 1 in a set partition. St001809The index of the step at the first peak of maximal height in a Dyck path. St000439The position of the first down step of a Dyck path. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001504The sum of all indegrees of vertices with indegree at least two in the resolution quiver of a Nakayama algebra corresponding to the Dyck path. St001505The number of elements generated by the Dyck path as a map in the full transformation monoid. St000947The major index east count of a Dyck path. St000374The number of exclusive right-to-left minima of a permutation. St000446The disorder of a permutation. St000492The rob statistic of a set partition. St000499The rcb statistic of a set partition. St000577The number of occurrences of the pattern {{1},{2}} such that 1 is a maximal element. St000703The number of deficiencies of a permutation. St000946The sum of the skew hook positions in a Dyck path. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000451The length of the longest pattern of the form k 1 2. St000391The sum of the positions of the ones in a binary word. St000419The number of Dyck paths that are weakly above the Dyck path, except for the path itself. St000442The maximal area to the right of an up step of a Dyck path. St000493The los statistic of a set partition. St000502The number of successions of a set partitions. St000503The maximal difference between two elements in a common block. St000507The number of ascents of a standard tableau. St000579The number of occurrences of the pattern {{1},{2}} such that 2 is a maximal element. St000693The modular (standard) major index of a standard tableau. St000728The dimension of a set partition. St000730The maximal arc length of a set partition. St000874The position of the last double rise in a Dyck path. St000932The number of occurrences of the pattern UDU in a Dyck path. St001033The normalized area of the parallelogram polyomino associated with the Dyck path. St000420The number of Dyck paths that are weakly above a Dyck path. St000444The length of the maximal rise of a Dyck path. St000668The least common multiple of the parts of the partition. St000678The number of up steps after the last double rise of a Dyck path. St000708The product of the parts of an integer partition. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001062The maximal size of a block of a set partition. St001808The box weight or horizontal decoration of a Dyck path. St000833The comajor index of a permutation. St000846The maximal number of elements covering an element of a poset. St000662The staircase size of the code of a permutation. St000883The number of longest increasing subsequences of a permutation. St000028The number of stack-sorts needed to sort a permutation. St000141The maximum drop size of a permutation. St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St000054The first entry of the permutation. St001172The number of 1-rises at odd height of a Dyck path. St000209Maximum difference of elements in cycles. St000306The bounce count of a Dyck path. St000956The maximal displacement of a permutation. St001558The number of transpositions that are smaller or equal to a permutation in Bruhat order. St001579The number of cyclically simple transpositions decreasing the number of cyclic descents needed to sort a permutation. St001671Haglund's hag of a permutation. St001726The number of visible inversions of a permutation. St001464The number of bases of the positroid corresponding to the permutation, with all fixed points counterclockwise. St000667The greatest common divisor of the parts of the partition. St000797The stat`` of a permutation. St000798The makl of a permutation. St001498The normalised height of a Nakayama algebra with magnitude 1. St001933The largest multiplicity of a part in an integer partition. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St000018The number of inversions of a permutation. St000019The cardinality of the support of a permutation. St000288The number of ones in a binary word. St000296The length of the symmetric border of a binary word. St000297The number of leading ones in a binary word. St000392The length of the longest run of ones in a binary word. St000393The number of strictly increasing runs in a binary word. St000539The number of odd inversions of a permutation. St000627The exponent of a binary word. St000653The last descent of a permutation. St000675The number of centered multitunnels of a Dyck path. St000794The mak of a permutation. St000809The reduced reflection length of the permutation. St000876The number of factors in the Catalan decomposition of a binary word. St000885The number of critical steps in the Catalan decomposition of a binary word. St000922The minimal number such that all substrings of this length are unique. St000957The number of Bruhat lower covers of a permutation. St000982The length of the longest constant subword. St001076The minimal length of a factorization of a permutation into transpositions that are cyclic shifts of (12). St001118The acyclic chromatic index of a graph. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001267The length of the Lyndon factorization of the binary word. St001372The length of a longest cyclic run of ones of a binary word. St001415The length of the longest palindromic prefix of a binary word. St001416The length of a longest palindromic factor of a binary word. St001417The length of a longest palindromic subword of a binary word. St001437The flex of a binary word. St001884The number of borders of a binary word. St000294The number of distinct factors of a binary word. St000295The length of the border of a binary word. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000485The length of the longest cycle of a permutation. St000518The number of distinct subsequences in a binary word. St000519The largest length of a factor maximising the subword complexity. St000844The size of the largest block in the direct sum decomposition of a permutation. St000225Difference between largest and smallest parts in a partition. St000161The sum of the sizes of the right subtrees of a binary tree. St000651The maximal size of a rise in a permutation. St000770The major index of an integer partition when read from bottom to top. St000831The number of indices that are either descents or recoils. St000068The number of minimal elements in a poset. St001786The number of total orderings of the north steps of a Dyck path such that steps after the k-th east step are not among the first k positions in the order. St001571The Cartan determinant of the integer partition. St000491The number of inversions of a set partition. St000496The rcs statistic of a set partition. St000497The lcb statistic of a set partition. St000565The major index of a set partition. St000572The dimension exponent of a set partition. St000581The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, 2 is maximal. St000733The row containing the largest entry of a standard tableau. St001489The maximum of the number of descents and the number of inverse descents. St000470The number of runs in a permutation. St000795The mad of a permutation. St000041The number of nestings of a perfect matching. St000237The number of small exceedances. St000354The number of recoils of a permutation. St000829The Ulam distance of a permutation to the identity permutation. St001061The number of indices that are both descents and recoils of a permutation. St000740The last entry of a permutation. St001497The position of the largest weak excedence of a permutation. St000110The number of permutations less than or equal to a permutation in left weak order. St000214The number of adjacencies of a permutation. St000989The number of final rises of a permutation. St000727The largest label of a leaf in the binary search tree associated with the permutation. St001462The number of factors of a standard tableaux under concatenation. St000100The number of linear extensions of a poset. St001695The natural comajor index of a standard Young tableau. St000993The multiplicity of the largest part of an integer partition. St001128The exponens consonantiae of a partition. St000005The bounce statistic of a Dyck path. St000120The number of left tunnels of a Dyck path. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St000117The number of centered tunnels of a Dyck path. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001265The maximal i such that the i-th simple module has projective dimension equal to the global dimension in the corresponding Nakayama algebra. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St000356The number of occurrences of the pattern 13-2. St000007The number of saliances of the permutation. St001268The size of the largest ordinal summand in the poset. St000052The number of valleys of a Dyck path not on the x-axis. St000223The number of nestings in the permutation. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St000654The first descent of a permutation. St000702The number of weak deficiencies of a permutation. St000838The number of terminal right-hand endpoints when the vertices are written in order. St000477The weight of a partition according to Alladi. St000145The Dyson rank of a partition. St000674The number of hills of a Dyck path. St000246The number of non-inversions of a permutation. St001397Number of pairs of incomparable elements in a finite poset. St001779The order of promotion on the set of linear extensions of a poset. St000067The inversion number of the alternating sign matrix. St000615The number of occurrences of the pattern {{1},{2},{3}} such that 1,3 are maximal. St001907The number of Bastidas - Hohlweg - Saliola excedances of a signed permutation. St000065The number of entries equal to -1 in an alternating sign matrix. St000431The number of occurrences of the pattern 213 or of the pattern 321 in a permutation. St000864The number of circled entries of the shifted recording tableau of a permutation. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St000066The column of the unique '1' in the first row of the alternating sign matrix. St000542The number of left-to-right-minima of a permutation. St001194The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module St000133The "bounce" of a permutation. St000304The load of a permutation. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001274The number of indecomposable injective modules with projective dimension equal to two. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St000004The major index of a permutation. St000029The depth of a permutation. St000030The sum of the descent differences of a permutations. St000154The sum of the descent bottoms of a permutation. St000155The number of exceedances (also excedences) of a permutation. St000156The Denert index of a permutation. St000305The inverse major index of a permutation. St000316The number of non-left-to-right-maxima of a permutation. St000339The maf index of a permutation. St000796The stat' of a permutation. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St000006The dinv of a Dyck path. St000021The number of descents of a permutation. St000051The size of the left subtree of a binary tree. St000057The Shynar inversion number of a standard tableau. St000076The rank of the alternating sign matrix in the alternating sign matrix poset. St000204The number of internal nodes of a binary tree. St000224The sorting index of a permutation. St000238The number of indices that are not small weak excedances. St000331The number of upper interactions of a Dyck path. St000332The positive inversions of an alternating sign matrix. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000554The number of occurrences of the pattern {{1,2},{3}} in a set partition. St001077The prefix exchange distance of a permutation. St001117The game chromatic index of a graph. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001428The number of B-inversions of a signed permutation. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001584The area statistic between a Dyck path and its bounce path. St001842The major index of a set partition. St001843The Z-index of a set partition. St001869The maximum cut size of a graph. St000015The number of peaks of a Dyck path. St000086The number of subgraphs. St000213The number of weak exceedances (also weak excedences) of a permutation. St000240The number of indices that are not small excedances. St000299The number of nonisomorphic vertex-induced subtrees. St000314The number of left-to-right-maxima of a permutation. St000325The width of the tree associated to a permutation. St000335The difference of lower and upper interactions. St000443The number of long tunnels of a Dyck path. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St000990The first ascent of a permutation. St000991The number of right-to-left minima of a permutation. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001530The depth of a Dyck path. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St000998Number of indecomposable projective modules with injective dimension smaller than or equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St000216The absolute length of a permutation. St000472The sum of the ascent bottoms of a permutation. St001480The number of simple summands of the module J^2/J^3. St000082The number of elements smaller than a binary tree in Tamari order. St000280The size of the preimage of the map 'to labelling permutation' from Parking functions to Permutations. St001346The number of parking functions that give the same permutation. St000123The difference in Coxeter length of a permutation and its image under the Simion-Schmidt map. St000434The number of occurrences of the pattern 213 or of the pattern 312 in a permutation. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001959The product of the heights of the peaks of a Dyck path. St000462The major index minus the number of excedences of a permutation. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001685The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation. St001810The number of fixed points of a permutation smaller than its largest moved point. St000652The maximal difference between successive positions of a permutation. St000355The number of occurrences of the pattern 21-3. St000367The number of simsun double descents of a permutation. St001745The number of occurrences of the arrow pattern 13 with an arrow from 1 to 2 in a permutation. St000463The number of admissible inversions of a permutation. St000358The number of occurrences of the pattern 31-2. St000961The shifted major index of a permutation. St001727The number of invisible inversions of a permutation. St000732The number of double deficiencies of a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St000359The number of occurrences of the pattern 23-1. St000803The number of occurrences of the vincular pattern |132 in a permutation. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000372The number of mid points of increasing subsequences of length 3 in a permutation. St000461The rix statistic of a permutation. St000526The number of posets with combinatorially isomorphic order polytopes. St000840The number of closers smaller than the largest opener in a perfect matching. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St001330The hat guessing number of a graph. St000724The label of the leaf of the path following the smaller label in the increasing binary tree associated to a permutation. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001684The reduced word complexity of a permutation. St000199The column of the unique '1' in the last row of the alternating sign matrix. St000200The row of the unique '1' in the last column of the alternating sign matrix. St000039The number of crossings of a permutation. St000317The cycle descent number of a permutation. St000360The number of occurrences of the pattern 32-1. St000376The bounce deficit of a Dyck path. St000436The number of occurrences of the pattern 231 or of the pattern 321 in a permutation. St000710The number of big deficiencies of a permutation. St000799The number of occurrences of the vincular pattern |213 in a permutation. St000800The number of occurrences of the vincular pattern |231 in a permutation. St000801The number of occurrences of the vincular pattern |312 in a permutation. St000802The number of occurrences of the vincular pattern |321 in a permutation. St000804The number of occurrences of the vincular pattern |123 in a permutation. St000873The aix statistic of a permutation. St001152The number of pairs with even minimum in a perfect matching. St001266The largest vector space dimension of an indecomposable non-projective module that is reflexive in the corresponding Nakayama algebra. St000060The greater neighbor of the maximum. St000193The row of the unique '1' in the first column of the alternating sign matrix. St001555The order of a signed permutation. St000144The pyramid weight of the Dyck path. St000673The number of non-fixed points of a permutation. St001180Number of indecomposable injective modules with projective dimension at most 1. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St000219The number of occurrences of the pattern 231 in a permutation. St000045The number of linear extensions of a binary tree. St000260The radius of a connected graph. St000456The monochromatic index of a connected graph. St000618The number of self-evacuating tableaux of given shape. St000781The number of proper colouring schemes of a Ferrers diagram. St001432The order dimension of the partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001593This is the number of standard Young tableaux of the given shifted shape. St001769The reflection length of a signed permutation. St001780The order of promotion on the set of standard tableaux of given shape. St001861The number of Bruhat lower covers of a permutation. St001864The number of excedances of a signed permutation. St001894The depth of a signed permutation. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St001175The size of a partition minus the hook length of the base cell. St001177Twice the mean value of the major index among all standard Young tableaux of a partition. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001855The number of signed permutations less than or equal to a signed permutation in left weak order. St001961The sum of the greatest common divisors of all pairs of parts. St000806The semiperimeter of the associated bargraph. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000284The Plancherel distribution on integer partitions. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000706The product of the factorials of the multiplicities of an integer partition. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000901The cube of the number of standard Young tableaux with shape given by the partition. St001568The smallest positive integer that does not appear twice in the partition. St000567The sum of the products of all pairs of parts. St000929The constant term of the character polynomial of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000264The girth of a graph, which is not a tree. St001209The pmaj statistic of a parking function. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001413Half the length of the longest even length palindromic prefix of a binary word. St001513The number of nested exceedences of a permutation. St001557The number of inversions of the second entry of a permutation. St001811The Castelnuovo-Mumford regularity of a permutation. St001905The number of preferred parking spots in a parking function less than the index of the car. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St000259The diameter of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000741The Colin de Verdière graph invariant. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St000609The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal. St001075The minimal size of a block of a set partition. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001060The distinguishing index of a graph. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000441The number of successions of a permutation. St000665The number of rafts of a permutation. St000366The number of double descents of a permutation. St000871The number of very big ascents of a permutation. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000742The number of big ascents of a permutation after prepending zero. St000023The number of inner peaks of a permutation. St000091The descent variation of a composition. St000232The number of crossings of a set partition. St000233The number of nestings of a set partition. St000333The dez statistic, the number of descents of a permutation after replacing fixed points by zeros. St000353The number of inner valleys of a permutation. St000486The number of cycles of length at least 3 of a permutation. St000562The number of internal points of a set partition. St000601The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal, (2,3) are consecutive in a block. St000646The number of big ascents of a permutation. St000648The number of 2-excedences of a permutation. St000649The number of 3-excedences of a permutation. St000663The number of right floats of a permutation. St000711The number of big exceedences of a permutation. St001323The independence gap of a graph. St001347The number of pairs of vertices of a graph having the same neighbourhood. St001414Half the length of the longest odd length palindromic prefix of a binary word. St001469The holeyness of a permutation. St001470The cyclic holeyness of a permutation. St001556The number of inversions of the third entry of a permutation. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001594The number of indecomposable projective modules in the Nakayama algebra corresponding to the Dyck path such that the UC-condition is satisfied. St001712The number of natural descents of a standard Young tableau. St001728The number of invisible descents of a permutation. St001781The interlacing number of a set partition. St001816Eigenvalues of the top-to-random operator acting on a simple module. St001822The number of alignments of a signed permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St000035The number of left outer peaks of a permutation. St000062The length of the longest increasing subsequence of the permutation. St000092The number of outer peaks of a permutation. St000099The number of valleys of a permutation, including the boundary. St000239The number of small weak excedances. St000308The height of the tree associated to a permutation. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001512The minimum rank of a graph. St001737The number of descents of type 2 in a permutation. St001768The number of reduced words of a signed permutation. St001778The largest greatest common divisor of an element and its image in a permutation. St001949The rigidity index of a graph. St000824The sum of the number of descents and the number of recoils of a permutation. St001463The number of distinct columns in the nullspace of a graph. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St000836The number of descents of distance 2 of a permutation. St000464The Schultz index of a connected graph. St001545The second Elser number of a connected graph.