Your data matches 479 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00032: Dyck paths inverse zeta mapDyck paths
St000645: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 4
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 6
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> 4
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 5
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 4
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 2
Description
The sum of the areas of the rectangles formed by two consecutive peaks and the valley in between. For a Dyck path $D = D_1 \cdots D_{2n}$ with peaks in positions $i_1 < \ldots < i_k$ and valleys in positions $j_1 < \ldots < j_{k-1}$, this statistic is given by $$ \sum_{a=1}^{k-1} (j_a-i_a)(i_{a+1}-j_a) $$
Mp00327: Dyck paths inverse Kreweras complementDyck paths
St001161: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 5
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 4
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 6
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> 4
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> 5
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> 4
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> 2
Description
The major index north count of a Dyck path. The descent set $\operatorname{des}(D)$ of a Dyck path $D = D_1 \cdots D_{2n}$ with $D_i \in \{N,E\}$ is given by all indices $i$ such that $D_i = E$ and $D_{i+1} = N$. This is, the positions of the valleys of $D$. The '''major index''' of a Dyck path is then the sum of the positions of the valleys, $\sum_{i \in \operatorname{des}(D)} i$, see [[St000027]]. The '''major index north count''' is given by $\sum_{i \in \operatorname{des}(D)} \#\{ j \leq i \mid D_j = N\}$.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St001759: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => 2
[1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 3
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 3
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => 5
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => 5
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => 4
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,4,2,5,6] => 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6] => 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7] => 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,7] => 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => 6
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => 4
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => 5
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => 4
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7] => 2
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,3,4,2,5,6,7] => 3
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7] => 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7] => 2
Description
The Rajchgot index of a permutation. The '''Rajchgot index''' of a permutation $\sigma$ is the degree of the ''Grothendieck polynomial'' of $\sigma$. This statistic on permutations was defined by Pechenik, Speyer, and Weigandt [1]. It can be computed by taking the maximum major index [[St000004]] of the permutations smaller than or equal to $\sigma$ in the right ''weak Bruhat order''.
Matching statistic: St000008
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00071: Permutations descent compositionInteger compositions
St000008: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [1,2] => [2] => 0
[1,1,0,0]
=> [2,1] => [1,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => [3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => [2,1] => 2
[1,1,0,0,1,0]
=> [2,1,3] => [1,2] => 1
[1,1,0,1,0,0]
=> [2,3,1] => [2,1] => 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [3,1] => 3
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [2,2] => 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,1] => 3
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,3] => 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,2] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [4,1] => 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [3,2] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [4,1] => 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [2,3] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,2] => 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,4] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3] => 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [6] => 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [5,1] => 5
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [4,2] => 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [5,1] => 5
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [3,3] => 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => [4,2] => 4
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [2,4] => 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,4,2,5,6] => [3,3] => 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => [1,5] => 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6] => [2,4] => 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7] => [7] => 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => [6,1] => 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,7] => [5,2] => 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [6,1] => 6
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => [4,3] => 4
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => [5,2] => 5
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => [3,4] => 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => [4,3] => 4
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7] => [2,5] => 2
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,3,4,2,5,6,7] => [3,4] => 3
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7] => [1,6] => 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7] => [2,5] => 2
Description
The major index of the composition. The descents of a composition $[c_1,c_2,\dots,c_k]$ are the partial sums $c_1, c_1+c_2,\dots, c_1+\dots+c_{k-1}$, excluding the sum of all parts. The major index of a composition is the sum of its descents. For details about the major index see [[Permutations/Descents-Major]].
Mp00099: Dyck paths bounce pathDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
St000012: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 0
[1,1,0,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 4
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> 6
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> 5
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> 4
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> 2
Description
The area of a Dyck path. This is the number of complete squares in the integer lattice which are below the path and above the x-axis. The 'half-squares' directly above the axis do not contribute to this statistic. 1. Dyck paths are bijection with '''area sequences''' $(a_1,\ldots,a_n)$ such that $a_1 = 0, a_{k+1} \leq a_k + 1$. 2. The generating function $\mathbf{D}_n(q) = \sum_{D \in \mathfrak{D}_n} q^{\operatorname{area}(D)}$ satisfy the recurrence $$\mathbf{D}_{n+1}(q) = \sum q^k \mathbf{D}_k(q) \mathbf{D}_{n-k}(q).$$ 3. The area is equidistributed with [[St000005]] and [[St000006]]. Pairs of these statistics play an important role in the theory of $q,t$-Catalan numbers.
Mp00032: Dyck paths inverse zeta mapDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St000018: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,2] => 0
[1,1,0,0]
=> [1,0,1,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [2,3,1] => 2
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [3,1,2] => 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 3
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => 5
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6] => 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,1,2,3,4,6] => 4
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6] => 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [4,1,2,3,5,6] => 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [3,1,2,4,5,6] => 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7] => 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,1,7] => 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6] => 6
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,1,6,7] => 4
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [6,1,2,3,4,5,7] => 5
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [2,3,4,1,5,6,7] => 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [5,1,2,3,4,6,7] => 4
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7] => 2
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [4,1,2,3,5,6,7] => 3
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [3,1,2,4,5,6,7] => 2
Description
The number of inversions of a permutation. This equals the minimal number of simple transpositions $(i,i+1)$ needed to write $\pi$. Thus, it is also the Coxeter length of $\pi$.
Mp00032: Dyck paths inverse zeta mapDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St000019: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,2] => 0
[1,1,0,0]
=> [1,0,1,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [2,3,1] => 2
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [3,1,2] => 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 3
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => 5
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6] => 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,1,2,3,4,6] => 4
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6] => 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [4,1,2,3,5,6] => 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [3,1,2,4,5,6] => 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7] => 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,1,7] => 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6] => 6
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,1,6,7] => 4
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [6,1,2,3,4,5,7] => 5
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [2,3,4,1,5,6,7] => 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [5,1,2,3,4,6,7] => 4
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7] => 2
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [4,1,2,3,5,6,7] => 3
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [3,1,2,4,5,6,7] => 2
Description
The cardinality of the support of a permutation. A permutation $\sigma$ may be written as a product $\sigma = s_{i_1}\dots s_{i_k}$ with $k$ minimal, where $s_i = (i,i+1)$ denotes the simple transposition swapping the entries in positions $i$ and $i+1$. The set of indices $\{i_1,\dots,i_k\}$ is the '''support''' of $\sigma$ and independent of the chosen way to write $\sigma$ as such a product. See [2], Definition 1 and Proposition 10. The '''connectivity set''' of $\sigma$ of length $n$ is the set of indices $1 \leq i < n$ such that $\sigma(k) < i$ for all $k < i$. Thus, the connectivity set is the complement of the support.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00070: Permutations Robinson-Schensted recording tableauStandard tableaux
St000059: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [[1]]
=> 0
[1,0,1,0]
=> [1,2] => [[1,2]]
=> 0
[1,1,0,0]
=> [2,1] => [[1],[2]]
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [[1,2,3]]
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [[1,2],[3]]
=> 2
[1,1,0,0,1,0]
=> [2,1,3] => [[1,3],[2]]
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [[1,2],[3]]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [[1,2,3,4]]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [[1,2,3],[4]]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [[1,2,4],[3]]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [[1,2,3],[4]]
=> 3
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [[1,3,4],[2]]
=> 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [[1,2,4],[3]]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [[1,2,3,5],[4]]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [[1,2,3,4],[5]]
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [[1,2,4,5],[3]]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [[1,2,3,5],[4]]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [[1,3,4,5],[2]]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [[1,2,4,5],[3]]
=> 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [[1,2,3,4,5,6]]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [[1,2,3,4,5],[6]]
=> 5
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [[1,2,3,4,6],[5]]
=> 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [[1,2,3,4,5],[6]]
=> 5
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [[1,2,3,5,6],[4]]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => [[1,2,3,4,6],[5]]
=> 4
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [[1,2,4,5,6],[3]]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,4,2,5,6] => [[1,2,3,5,6],[4]]
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => [[1,3,4,5,6],[2]]
=> 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6] => [[1,2,4,5,6],[3]]
=> 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7] => [[1,2,3,4,5,6,7]]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => [[1,2,3,4,5,6],[7]]
=> 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,7] => [[1,2,3,4,5,7],[6]]
=> 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [[1,2,3,4,5,6],[7]]
=> 6
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => [[1,2,3,4,6,7],[5]]
=> 4
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => [[1,2,3,4,5,7],[6]]
=> 5
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => [[1,2,3,5,6,7],[4]]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => [[1,2,3,4,6,7],[5]]
=> 4
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7] => [[1,2,4,5,6,7],[3]]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,3,4,2,5,6,7] => [[1,2,3,5,6,7],[4]]
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7] => [[1,3,4,5,6,7],[2]]
=> 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7] => [[1,2,4,5,6,7],[3]]
=> 2
Description
The inversion number of a standard tableau as defined by Haglund and Stevens. Their inversion number is the total number of inversion pairs for the tableau. An inversion pair is defined as a pair of cells (a,b), (x,y) such that the content of (x,y) is greater than the content of (a,b) and (x,y) is north of the inversion path of (a,b), where the inversion path is defined in detail in [1].
Mp00222: Dyck paths peaks-to-valleysDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> []
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> []
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2]
=> 2
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> 3
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5]
=> 5
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [5,4]
=> 5
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,3,3]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [4,4,3]
=> 4
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2]
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1]
=> 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2,1]
=> 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6]
=> 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [5,5]
=> 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [6,5]
=> 6
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [4,4,4]
=> 4
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [5,5,4]
=> 5
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [3,3,3,3]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [4,4,4,3]
=> 4
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,2,2,2,2]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [3,3,3,3,2]
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1]
=> 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,2,2,2,2,1]
=> 2
Description
The largest part of an integer partition.
Mp00032: Dyck paths inverse zeta mapDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St000228: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> []
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> []
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> 0
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 2
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1]
=> 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [2]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 3
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1]
=> 5
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5]
=> 5
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 4
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1]
=> 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1]
=> 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6]
=> 6
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1]
=> 4
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [5]
=> 5
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [4]
=> 4
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [3]
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1]
=> 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2]
=> 2
Description
The size of a partition. This statistic is the constant statistic of the level sets.
The following 469 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000330The (standard) major index of a standard tableau. St000384The maximal part of the shifted composition of an integer partition. St000394The sum of the heights of the peaks of a Dyck path minus the number of peaks. St000459The hook length of the base cell of a partition. St000784The maximum of the length and the largest part of the integer partition. St001090The number of pop-stack-sorts needed to sort a permutation. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001300The rank of the boundary operator in degree 1 of the chain complex of the order complex of the poset. St001436The index of a given binary word in the lex-order among all its cyclic shifts. St000026The position of the first return of a Dyck path. St000032The number of elements smaller than the given Dyck path in the Tamari Order. St000058The order of a permutation. St000063The number of linear extensions of a certain poset defined for an integer partition. St000108The number of partitions contained in the given partition. St000110The number of permutations less than or equal to a permutation in left weak order. St000532The total number of rook placements on a Ferrers board. St000734The last entry in the first row of a standard tableau. St000738The first entry in the last row of a standard tableau. St000839The largest opener of a set partition. St001400The total number of Littlewood-Richardson tableaux of given shape. St000009The charge of a standard tableau. St000010The length of the partition. St000013The height of a Dyck path. St000024The number of double up and double down steps of a Dyck path. St000028The number of stack-sorts needed to sort a permutation. St000053The number of valleys of the Dyck path. St000081The number of edges of a graph. St000141The maximum drop size of a permutation. St000148The number of odd parts of a partition. St000160The multiplicity of the smallest part of a partition. St000169The cocharge of a standard tableau. St000171The degree of the graph. St000185The weighted size of a partition. St000211The rank of the set partition. St000237The number of small exceedances. St000290The major index of a binary word. St000293The number of inversions of a binary word. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St000369The dinv deficit of a Dyck path. St000374The number of exclusive right-to-left minima of a permutation. St000376The bounce deficit of a Dyck path. St000475The number of parts equal to 1 in a partition. St000548The number of different non-empty partial sums of an integer partition. St000676The number of odd rises of a Dyck path. St000692Babson and Steingrímsson's statistic of a permutation. St000703The number of deficiencies of a permutation. St000846The maximal number of elements covering an element of a poset. St000867The sum of the hook lengths in the first row of an integer partition. St000987The number of positive eigenvalues of the Laplacian matrix of the graph. St000996The number of exclusive left-to-right maxima of a permutation. St001034The area of the parallelogram polyomino associated with the Dyck path. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001094The depth index of a set partition. St001127The sum of the squares of the parts of a partition. St001176The size of a partition minus its first part. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001197The global dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001479The number of bridges of a graph. St001485The modular major index of a binary word. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001697The shifted natural comajor index of a standard Young tableau. St001721The degree of a binary word. St001826The maximal number of leaves on a vertex of a graph. St001910The height of the middle non-run of a Dyck path. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St000011The number of touch points (or returns) of a Dyck path. St000025The number of initial rises of a Dyck path. St000054The first entry of the permutation. St000381The largest part of an integer composition. St000382The first part of an integer composition. St000383The last part of an integer composition. St000451The length of the longest pattern of the form k 1 2. St000468The Hosoya index of a graph. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000505The biggest entry in the block containing the 1. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St000686The finitistic dominant dimension of a Dyck path. St000808The number of up steps of the associated bargraph. St000814The sum of the entries in the column specified by the partition of the change of basis matrix from elementary symmetric functions to Schur symmetric functions. St000971The smallest closer of a set partition. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001009Number of indecomposable injective modules with projective dimension g when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001088Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows: St001365The number of lattice paths of the same length weakly above the path given by a binary word. St001389The number of partitions of the same length below the given integer partition. St001415The length of the longest palindromic prefix of a binary word. St001419The length of the longest palindromic factor beginning with a one of a binary word. St001674The number of vertices of the largest induced star graph in the graph. St001725The harmonious chromatic number of a graph. St001733The number of weak left to right maxima of a Dyck path. St001784The minimum of the smallest closer and the second element of the block containing 1 in a set partition. St001786The number of total orderings of the north steps of a Dyck path such that steps after the k-th east step are not among the first k positions in the order. St001800The number of 3-Catalan paths having this Dyck path as first and last coordinate projections. St001809The index of the step at the first peak of maximal height in a Dyck path. St001814The number of partitions interlacing the given partition. St000439The position of the first down step of a Dyck path. St000969We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n-1}]$ by adding $c_0$ to $c_{n-1}$. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001504The sum of all indegrees of vertices with indegree at least two in the resolution quiver of a Nakayama algebra corresponding to the Dyck path. St001505The number of elements generated by the Dyck path as a map in the full transformation monoid. St000419The number of Dyck paths that are weakly above the Dyck path, except for the path itself. St000420The number of Dyck paths that are weakly above a Dyck path. St000391The sum of the positions of the ones in a binary word. St000579The number of occurrences of the pattern {{1},{2}} such that 2 is a maximal element. St000693The modular (standard) major index of a standard tableau. St000947The major index east count of a Dyck path. St000984The number of boxes below precisely one peak. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001671Haglund's hag of a permutation. St000442The maximal area to the right of an up step of a Dyck path. St000492The rob statistic of a set partition. St000493The los statistic of a set partition. St000498The lcs statistic of a set partition. St000499The rcb statistic of a set partition. St000502The number of successions of a set partitions. St000503The maximal difference between two elements in a common block. St000577The number of occurrences of the pattern {{1},{2}} such that 1 is a maximal element. St000578The number of occurrences of the pattern {{1},{2}} such that 1 is a singleton. St000728The dimension of a set partition. St000730The maximal arc length of a set partition. St000874The position of the last double rise in a Dyck path. St000877The depth of the binary word interpreted as a path. St000932The number of occurrences of the pattern UDU in a Dyck path. St000946The sum of the skew hook positions in a Dyck path. St000326The position of the first one in a binary word after appending a 1 at the end. St000444The length of the maximal rise of a Dyck path. St000504The cardinality of the first block of a set partition. St000668The least common multiple of the parts of the partition. St000675The number of centered multitunnels of a Dyck path. St000708The product of the parts of an integer partition. St000823The number of unsplittable factors of the set partition. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001062The maximal size of a block of a set partition. St001808The box weight or horizontal decoration of a Dyck path. St000446The disorder of a permutation. St000653The last descent of a permutation. St000794The mak of a permutation. St000797The stat`` of a permutation. St000798The makl of a permutation. St000209Maximum difference of elements in cycles. St001033The normalized area of the parallelogram polyomino associated with the Dyck path. St001558The number of transpositions that are smaller or equal to a permutation in Bruhat order. St001579The number of cyclically simple transpositions decreasing the number of cyclic descents needed to sort a permutation. St001726The number of visible inversions of a permutation. St001464The number of bases of the positroid corresponding to the permutation, with all fixed points counterclockwise. St000844The size of the largest block in the direct sum decomposition of a permutation. St000602The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal. St000809The reduced reflection length of the permutation. St000833The comajor index of a permutation. St000956The maximal displacement of a permutation. St000957The number of Bruhat lower covers of a permutation. St001076The minimal length of a factorization of a permutation into transpositions that are cyclic shifts of (12). St000100The number of linear extensions of a poset. St000485The length of the longest cycle of a permutation. St000119The number of occurrences of the pattern 321 in a permutation. St000123The difference in Coxeter length of a permutation and its image under the Simion-Schmidt map. St000433The number of occurrences of the pattern 132 or of the pattern 321 in a permutation. St000845The maximal number of elements covered by an element in a poset. St000795The mad of a permutation. St000161The sum of the sizes of the right subtrees of a binary tree. St000539The number of odd inversions of a permutation. St000831The number of indices that are either descents or recoils. St001268The size of the largest ordinal summand in the poset. St000306The bounce count of a Dyck path. St000356The number of occurrences of the pattern 13-2. St000463The number of admissible inversions of a permutation. St000610The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal. St000651The maximal size of a rise in a permutation. St000740The last entry of a permutation. St000460The hook length of the last cell along the main diagonal of an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001360The number of covering relations in Young's lattice below a partition. St001498The normalised height of a Nakayama algebra with magnitude 1. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St000497The lcb statistic of a set partition. St000519The largest length of a factor maximising the subword complexity. St000572The dimension exponent of a set partition. St000593The number of occurrences of the pattern {{1},{2},{3}} such that 1,2 are minimal. St000600The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, (1,3) are consecutive in a block. St000667The greatest common divisor of the parts of the partition. St000922The minimal number such that all substrings of this length are unique. St000982The length of the longest constant subword. St001118The acyclic chromatic index of a graph. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001249Sum of the odd parts of a partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001348The bounce of the parallelogram polyomino associated with the Dyck path. St001416The length of a longest palindromic factor of a binary word. St001417The length of a longest palindromic subword of a binary word. St001523The degree of symmetry of a Dyck path. St001660The number of ways to place as many non-attacking rooks as possible on a skew Ferrers board. St001933The largest multiplicity of a part in an integer partition. St000393The number of strictly increasing runs in a binary word. St000395The sum of the heights of the peaks of a Dyck path. St000529The number of permutations whose descent word is the given binary word. St000543The size of the conjugacy class of a binary word. St000626The minimal period of a binary word. St000885The number of critical steps in the Catalan decomposition of a binary word. St000921The number of internal inversions of a binary word. St001020Sum of the codominant dimensions of the non-projective indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001126Number of simple module that are 1-regular in the corresponding Nakayama algebra. St001190Number of simple modules with projective dimension at most 4 in the corresponding Nakayama algebra. St001211The number of simple modules in the corresponding Nakayama algebra that have vanishing second Ext-group with the regular module. St001237The number of simple modules with injective dimension at most one or dominant dimension at least one. St001267The length of the Lyndon factorization of the binary word. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001437The flex of a binary word. St001492The number of simple modules that do not appear in the socle of the regular module or have no nontrivial selfextensions with the regular module in the corresponding Nakayama algebra. St001497The position of the largest weak excedence of a permutation. St001658The total number of rook placements on a Ferrers board. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001955The number of natural descents for set-valued two row standard Young tableaux. St000998Number of indecomposable projective modules with injective dimension smaller than or equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001012Number of simple modules with projective dimension at most 2 in the Nakayama algebra corresponding to the Dyck path. St001643The Frobenius dimension of the Nakayama algebra corresponding to the Dyck path. St001838The number of nonempty primitive factors of a binary word. St000041The number of nestings of a perfect matching. St000246The number of non-inversions of a permutation. St000770The major index of an integer partition when read from bottom to top. St000993The multiplicity of the largest part of an integer partition. St000727The largest label of a leaf in the binary search tree associated with the permutation. St000335The difference of lower and upper interactions. St000443The number of long tunnels of a Dyck path. St001014Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path. St001015Number of indecomposable injective modules with codominant dimension equal to one in the Nakayama algebra corresponding to the Dyck path. St001016Number of indecomposable injective modules with codominant dimension at most 1 in the Nakayama algebra corresponding to the Dyck path. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001241The number of non-zero radicals of the indecomposable projective modules that have injective dimension and projective dimension at most one. St001297The number of indecomposable non-injective projective modules minus the number of indecomposable non-injective projective modules that have reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001397Number of pairs of incomparable elements in a finite poset. St001959The product of the heights of the peaks of a Dyck path. St000014The number of parking functions supported by a Dyck path. St000144The pyramid weight of the Dyck path. St001008Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001010Number of indecomposable injective modules with projective dimension g-1 when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001017Number of indecomposable injective modules with projective dimension equal to the codominant dimension in the Nakayama algebra corresponding to the Dyck path. St001018Sum of projective dimension of the indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001170Number of indecomposable injective modules whose socle has projective dimension at most g-1 when g denotes the global dimension in the corresponding Nakayama algebra. St001180Number of indecomposable injective modules with projective dimension at most 1. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001480The number of simple summands of the module J^2/J^3. St001779The order of promotion on the set of linear extensions of a poset. St001019Sum of the projective dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001023Number of simple modules with projective dimension at most 3 in the Nakayama algebra corresponding to the Dyck path. St001065Number of indecomposable reflexive modules in the corresponding Nakayama algebra. St001179Number of indecomposable injective modules with projective dimension at most 2 in the corresponding Nakayama algebra. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001650The order of Ringel's homological bijection associated to the linear Nakayama algebra corresponding to the Dyck path. St000967The value p(1) for the Coxeterpolynomial p of the corresponding LNakayama algebra. St001213The number of indecomposable modules in the corresponding Nakayama algebra that have vanishing first Ext-group with the regular module. St001218Smallest index k greater than or equal to one such that the Coxeter matrix C of the corresponding Nakayama algebra has C^k=1. St000085The number of linear extensions of the tree. St000796The stat' of a permutation. St000501The size of the first part in the decomposition of a permutation. St000067The inversion number of the alternating sign matrix. St000332The positive inversions of an alternating sign matrix. St001571The Cartan determinant of the integer partition. St000066The column of the unique '1' in the first row of the alternating sign matrix. St001778The largest greatest common divisor of an element and its image in a permutation. St000004The major index of a permutation. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St000005The bounce statistic of a Dyck path. St000029The depth of a permutation. St000030The sum of the descent differences of a permutations. St000051The size of the left subtree of a binary tree. St000120The number of left tunnels of a Dyck path. St000154The sum of the descent bottoms of a permutation. St000156The Denert index of a permutation. St000305The inverse major index of a permutation. St000316The number of non-left-to-right-maxima of a permutation. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000334The maz index, the major index of a permutation after replacing fixed points by zeros. St001077The prefix exchange distance of a permutation. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001194The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001274The number of indecomposable injective modules with projective dimension equal to two. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St000006The dinv of a Dyck path. St000057The Shynar inversion number of a standard tableau. St000076The rank of the alternating sign matrix in the alternating sign matrix poset. St000133The "bounce" of a permutation. St000155The number of exceedances (also excedences) of a permutation. St000204The number of internal nodes of a binary tree. St000224The sorting index of a permutation. St000304The load of a permutation. St000331The number of upper interactions of a Dyck path. St000339The maf index of a permutation. St001117The game chromatic index of a graph. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001265The maximal i such that the i-th simple module has projective dimension equal to the global dimension in the corresponding Nakayama algebra. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001428The number of B-inversions of a signed permutation. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001584The area statistic between a Dyck path and its bounce path. St001841The number of inversions of a set partition. St001842The major index of a set partition. St001843The Z-index of a set partition. St001869The maximum cut size of a graph. St000015The number of peaks of a Dyck path. St000086The number of subgraphs. St000240The number of indices that are not small excedances. St000299The number of nonisomorphic vertex-induced subtrees. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001481The minimal height of a peak of a Dyck path. St001530The depth of a Dyck path. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St000216The absolute length of a permutation. St000472The sum of the ascent bottoms of a permutation. St000280The size of the preimage of the map 'to labelling permutation' from Parking functions to Permutations. St000681The Grundy value of Chomp on Ferrers diagrams. St000803The number of occurrences of the vincular pattern |132 in a permutation. St001515The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule). St000061The number of nodes on the left branch of a binary tree. St000082The number of elements smaller than a binary tree in Tamari order. St000744The length of the path to the largest entry in a standard Young tableau. St001081The number of minimal length factorizations of a permutation into star transpositions. St001346The number of parking functions that give the same permutation. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St000652The maximal difference between successive positions of a permutation. St001246The maximal difference between two consecutive entries of a permutation. St001727The number of invisible inversions of a permutation. St000840The number of closers smaller than the largest opener in a perfect matching. St000961The shifted major index of a permutation. St000430The number of occurrences of the pattern 123 or of the pattern 312 in a permutation. St000462The major index minus the number of excedences of a permutation. St000799The number of occurrences of the vincular pattern |213 in a permutation. St000866The number of admissible inversions of a permutation in the sense of Shareshian-Wachs. St000702The number of weak deficiencies of a permutation. St001136The largest label with larger sister in the leaf labelled binary unordered tree associated with the perfect matching. St000724The label of the leaf of the path following the smaller label in the increasing binary tree associated to a permutation. St000719The number of alignments in a perfect matching. St000873The aix statistic of a permutation. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001684The reduced word complexity of a permutation. St000199The column of the unique '1' in the last row of the alternating sign matrix. St000200The row of the unique '1' in the last column of the alternating sign matrix. St000034The maximum defect over any reduced expression for a permutation and any subexpression. St000117The number of centered tunnels of a Dyck path. St000360The number of occurrences of the pattern 32-1. St000424The number of occurrences of the pattern 132 or of the pattern 231 in a permutation. St000427The number of occurrences of the pattern 123 or of the pattern 231 in a permutation. St000436The number of occurrences of the pattern 231 or of the pattern 321 in a permutation. St000461The rix statistic of a permutation. St000710The number of big deficiencies of a permutation. St000800The number of occurrences of the vincular pattern |231 in a permutation. St000801The number of occurrences of the vincular pattern |312 in a permutation. St000802The number of occurrences of the vincular pattern |321 in a permutation. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001152The number of pairs with even minimum in a perfect matching. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001266The largest vector space dimension of an indecomposable non-projective module that is reflexive in the corresponding Nakayama algebra. St001411The number of patterns 321 or 3412 in a permutation. St001511The minimal number of transpositions needed to sort a permutation in either direction. St001742The difference of the maximal and the minimal degree in a graph. St000060The greater neighbor of the maximum. St000193The row of the unique '1' in the first column of the alternating sign matrix. St001220The width of a permutation. St001555The order of a signed permutation. St000235The number of indices that are not cyclical small weak excedances. St000673The number of non-fixed points of a permutation. St001005The number of indices for a permutation that are either left-to-right maxima or right-to-left minima but not both. St001255The vector space dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St000327The number of cover relations in a poset. St000219The number of occurrences of the pattern 231 in a permutation. St001769The reflection length of a signed permutation. St001861The number of Bruhat lower covers of a permutation. St001894The depth of a signed permutation. St001855The number of signed permutations less than or equal to a signed permutation in left weak order. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000875The semilength of the longest Dyck word in the Catalan factorisation of a binary word. St001398Number of subsets of size 3 of elements in a poset that form a "v". St000456The monochromatic index of a connected graph. St001060The distinguishing index of a graph. St001772The number of occurrences of the signed pattern 12 in a signed permutation. St000682The Grundy value of Welter's game on a binary word. St001313The number of Dyck paths above the lattice path given by a binary word. St000136The dinv of a parking function. St000194The number of primary dinversion pairs of a labelled dyck path corresponding to a parking function. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001557The number of inversions of the second entry of a permutation. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St000260The radius of a connected graph. St000806The semiperimeter of the associated bargraph. St000632The jump number of the poset. St000422The energy of a graph, if it is integral. St000937The number of positive values of the symmetric group character corresponding to the partition. St001083The number of boxed occurrences of 132 in a permutation. St000307The number of rowmotion orbits of a poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001330The hat guessing number of a graph. St000023The number of inner peaks of a permutation. St000217The number of occurrences of the pattern 312 in a permutation. St000222The number of alignments in the permutation. St000259The diameter of a connected graph. St000317The cycle descent number of a permutation. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St000516The number of stretching pairs of a permutation. St000560The number of occurrences of the pattern {{1,2},{3,4}} in a set partition. St000565The major index of a set partition. St000576The number of occurrences of the pattern {{1},{2}} such that 1 is a maximal and 2 a minimal element. St000581The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, 2 is maximal. St000589The number of occurrences of the pattern {{1},{2,3}} such that 1 is maximal, (2,3) are consecutive in a block. St000590The number of occurrences of the pattern {{1},{2,3}} such that 2 is minimal, 1 is maximal, (2,3) are consecutive in a block. St000606The number of occurrences of the pattern {{1},{2,3}} such that 1,3 are maximal, (2,3) are consecutive in a block. St000611The number of occurrences of the pattern {{1},{2,3}} such that 1 is maximal. St000624The normalized sum of the minimal distances to a greater element. St001078The minimal number of occurrences of (12) in a factorization of a permutation into transpositions (12) and cycles (1,. St001403The number of vertical separators in a permutation. St001414Half the length of the longest odd length palindromic prefix of a binary word. St001535The number of cyclic alignments of a permutation. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001685The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St001911A descent variant minus the number of inversions. St000091The descent variation of a composition. St000099The number of valleys of a permutation, including the boundary. St000570The Edelman-Greene number of a permutation. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000864The number of circled entries of the shifted recording tableau of a permutation. St001273The projective dimension of the first term in an injective coresolution of the regular module. St000455The second largest eigenvalue of a graph if it is integral. St000735The last entry on the main diagonal of a standard tableau. St000454The largest eigenvalue of a graph if it is integral. St001651The Frankl number of a lattice. St001926Sparre Andersen's position of the maximum of a signed permutation. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St000264The girth of a graph, which is not a tree. St000893The number of distinct diagonal sums of an alternating sign matrix. St000068The number of minimal elements in a poset. St000071The number of maximal chains in a poset. St000527The width of the poset. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000909The number of maximal chains of maximal size in a poset.