Your data matches 13 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001232
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1,0]
=> [1,1,0,0]
=> 0
([],2)
=> [2] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> 0
([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
([],3)
=> [3] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(1,2)],3)
=> [1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 4
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([],4)
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
([(2,3)],4)
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 6
([(0,3),(1,2)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 4
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 4
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([],5)
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
([(3,4)],5)
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 8
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 8
([(1,4),(2,3)],5)
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 6
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 6
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
([],6)
=> [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0
([(4,5)],6)
=> [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> 10
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> 10
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> 10
([(2,5),(3,4)],6)
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> 8
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> 8
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> 8
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> 6
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> 10
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> 6
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> 10
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> 4
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> 4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> 8
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 2
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St001695
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00033: Dyck paths to two-row standard tableauStandard tableaux
St001695: Standard tableaux ⟶ ℤResult quality: 33% values known / values provided: 33%distinct values known / distinct values provided: 67%
Values
([],1)
=> [1] => [1,0]
=> [[1],[2]]
=> 0
([],2)
=> [2] => [1,1,0,0]
=> [[1,2],[3,4]]
=> 0
([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> [[1,3],[2,4]]
=> 2
([],3)
=> [3] => [1,1,1,0,0,0]
=> [[1,2,3],[4,5,6]]
=> 0
([(1,2)],3)
=> [1,2] => [1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> 4
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> 2
([],4)
=> [4] => [1,1,1,1,0,0,0,0]
=> [[1,2,3,4],[5,6,7,8]]
=> 0
([(2,3)],4)
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [[1,3,4,5],[2,6,7,8]]
=> 6
([(0,3),(1,2)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> 4
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> 4
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [[1,2,3,7],[4,5,6,8]]
=> 2
([],5)
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> ? = 0
([(3,4)],5)
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 8
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [[1,3,4,5,9],[2,6,7,8,10]]
=> ? = 8
([(1,4),(2,3)],5)
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[1,2,5,6,7],[3,4,8,9,10]]
=> ? = 6
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[1,2,5,6,7],[3,4,8,9,10]]
=> ? = 6
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [[1,2,3,4,9],[5,6,7,8,10]]
=> ? = 2
([],6)
=> [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12]]
=> ? = 0
([(4,5)],6)
=> [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[1,3,4,5,6,7],[2,8,9,10,11,12]]
=> ? = 10
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [[1,3,4,5,9,10],[2,6,7,8,11,12]]
=> ? = 10
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[1,3,4,5,6,11],[2,7,8,9,10,12]]
=> ? = 10
([(2,5),(3,4)],6)
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [[1,2,5,6,7,8],[3,4,9,10,11,12]]
=> ? = 8
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [[1,2,5,6,7,8],[3,4,9,10,11,12]]
=> ? = 8
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [[1,2,5,6,7,11],[3,4,8,9,10,12]]
=> ? = 8
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[1,2,3,7,8,9],[4,5,6,10,11,12]]
=> ? = 6
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [[1,3,4,5,9,10],[2,6,7,8,11,12]]
=> ? = 10
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[1,2,3,7,8,9],[4,5,6,10,11,12]]
=> ? = 6
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[1,3,4,5,6,11],[2,7,8,9,10,12]]
=> ? = 10
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[1,2,3,4,9,10],[5,6,7,8,11,12]]
=> ? = 4
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[1,2,3,4,9,10],[5,6,7,8,11,12]]
=> ? = 4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [[1,2,5,6,7,11],[3,4,8,9,10,12]]
=> ? = 8
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[1,2,3,4,5,11],[6,7,8,9,10,12]]
=> ? = 2
Description
The natural comajor index of a standard Young tableau. A natural descent of a standard tableau $T$ is an entry $i$ such that $i+1$ appears in a higher row than $i$ in English notation. The natural comajor index of a tableau of size $n$ with natural descent set $D$ is then $\sum_{d\in D} n-d$.
Matching statistic: St001698
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00033: Dyck paths to two-row standard tableauStandard tableaux
St001698: Standard tableaux ⟶ ℤResult quality: 33% values known / values provided: 33%distinct values known / distinct values provided: 67%
Values
([],1)
=> [1] => [1,0]
=> [[1],[2]]
=> 0
([],2)
=> [2] => [1,1,0,0]
=> [[1,2],[3,4]]
=> 0
([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> [[1,3],[2,4]]
=> 2
([],3)
=> [3] => [1,1,1,0,0,0]
=> [[1,2,3],[4,5,6]]
=> 0
([(1,2)],3)
=> [1,2] => [1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> 4
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> 2
([],4)
=> [4] => [1,1,1,1,0,0,0,0]
=> [[1,2,3,4],[5,6,7,8]]
=> 0
([(2,3)],4)
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [[1,3,4,5],[2,6,7,8]]
=> 6
([(0,3),(1,2)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> 4
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> 4
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [[1,2,3,7],[4,5,6,8]]
=> 2
([],5)
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> ? = 0
([(3,4)],5)
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 8
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [[1,3,4,5,9],[2,6,7,8,10]]
=> ? = 8
([(1,4),(2,3)],5)
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[1,2,5,6,7],[3,4,8,9,10]]
=> ? = 6
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[1,2,5,6,7],[3,4,8,9,10]]
=> ? = 6
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [[1,2,3,4,9],[5,6,7,8,10]]
=> ? = 2
([],6)
=> [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12]]
=> ? = 0
([(4,5)],6)
=> [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[1,3,4,5,6,7],[2,8,9,10,11,12]]
=> ? = 10
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [[1,3,4,5,9,10],[2,6,7,8,11,12]]
=> ? = 10
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[1,3,4,5,6,11],[2,7,8,9,10,12]]
=> ? = 10
([(2,5),(3,4)],6)
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [[1,2,5,6,7,8],[3,4,9,10,11,12]]
=> ? = 8
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [[1,2,5,6,7,8],[3,4,9,10,11,12]]
=> ? = 8
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [[1,2,5,6,7,11],[3,4,8,9,10,12]]
=> ? = 8
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[1,2,3,7,8,9],[4,5,6,10,11,12]]
=> ? = 6
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [[1,3,4,5,9,10],[2,6,7,8,11,12]]
=> ? = 10
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[1,2,3,7,8,9],[4,5,6,10,11,12]]
=> ? = 6
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[1,3,4,5,6,11],[2,7,8,9,10,12]]
=> ? = 10
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[1,2,3,4,9,10],[5,6,7,8,11,12]]
=> ? = 4
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[1,2,3,4,9,10],[5,6,7,8,11,12]]
=> ? = 4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [[1,2,5,6,7,11],[3,4,8,9,10,12]]
=> ? = 8
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[1,2,3,4,5,11],[6,7,8,9,10,12]]
=> ? = 2
Description
The comajor index of a standard tableau minus the weighted size of its shape.
Mp00154: Graphs coreGraphs
Mp00111: Graphs complementGraphs
St000259: Graphs ⟶ ℤResult quality: 17% values known / values provided: 18%distinct values known / distinct values provided: 17%
Values
([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2
([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2
([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2
([],5)
=> ([],1)
=> ([],1)
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 6
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 2
([],6)
=> ([],1)
=> ([],1)
=> 0
([(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 8
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 8
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 6
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 8
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 2
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Mp00154: Graphs coreGraphs
Mp00111: Graphs complementGraphs
St000260: Graphs ⟶ ℤResult quality: 17% values known / values provided: 18%distinct values known / distinct values provided: 17%
Values
([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2
([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2
([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2
([],5)
=> ([],1)
=> ([],1)
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 6
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 2
([],6)
=> ([],1)
=> ([],1)
=> 0
([(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 8
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 8
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 6
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 8
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 2
Description
The radius of a connected graph. This is the minimum eccentricity of any vertex.
Mp00154: Graphs coreGraphs
Mp00111: Graphs complementGraphs
St000302: Graphs ⟶ ℤResult quality: 17% values known / values provided: 18%distinct values known / distinct values provided: 17%
Values
([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2
([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2
([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2
([],5)
=> ([],1)
=> ([],1)
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 6
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 2
([],6)
=> ([],1)
=> ([],1)
=> 0
([(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 8
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 8
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 6
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 8
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 2
Description
The determinant of the distance matrix of a connected graph.
Mp00154: Graphs coreGraphs
Mp00111: Graphs complementGraphs
St000466: Graphs ⟶ ℤResult quality: 17% values known / values provided: 18%distinct values known / distinct values provided: 17%
Values
([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2
([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2
([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2
([],5)
=> ([],1)
=> ([],1)
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 6
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 2
([],6)
=> ([],1)
=> ([],1)
=> 0
([(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 8
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 8
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 6
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 8
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 2
Description
The Gutman (or modified Schultz) index of a connected graph. This is $$\sum_{\{u,v\}\subseteq V} d(u)d(v)d(u,v)$$ where $d(u)$ is the degree of vertex $u$ and $d(u,v)$ is the distance between vertices $u$ and $v$. For trees on $n$ vertices, the modified Schultz index is related to the Wiener index via $S^\ast(T)=4W(T)-(n-1)(2n-1)$ [1].
Mp00154: Graphs coreGraphs
Mp00111: Graphs complementGraphs
St000467: Graphs ⟶ ℤResult quality: 17% values known / values provided: 18%distinct values known / distinct values provided: 17%
Values
([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2
([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2
([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2
([],5)
=> ([],1)
=> ([],1)
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 6
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 2
([],6)
=> ([],1)
=> ([],1)
=> 0
([(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 8
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 8
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 6
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 8
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 2
Description
The hyper-Wiener index of a connected graph. This is $$ \sum_{\{u,v\}\subseteq V} d(u,v)+d(u,v)^2. $$
Mp00154: Graphs coreGraphs
Mp00111: Graphs complementGraphs
St000771: Graphs ⟶ ℤResult quality: 17% values known / values provided: 18%distinct values known / distinct values provided: 17%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 + 1
([],3)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4 + 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 + 1
([],4)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 + 1
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4 + 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 + 1
([],5)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8 + 1
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 + 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 6 + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 4 + 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 2 + 1
([],6)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10 + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10 + 1
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8 + 1
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 8 + 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 8 + 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 + 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10 + 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 6 + 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10 + 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 + 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 4 + 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 8 + 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 2 + 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $2$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Mp00154: Graphs coreGraphs
Mp00111: Graphs complementGraphs
St000772: Graphs ⟶ ℤResult quality: 17% values known / values provided: 18%distinct values known / distinct values provided: 17%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 + 1
([],3)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4 + 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 + 1
([],4)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 + 1
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4 + 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 + 1
([],5)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8 + 1
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 + 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 6 + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 4 + 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 2 + 1
([],6)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10 + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10 + 1
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8 + 1
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 8 + 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 8 + 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 + 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10 + 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 6 + 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 10 + 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 + 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 4 + 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 8 + 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 2 + 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $1$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$. The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
The following 3 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St001330The hat guessing number of a graph.