Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001253
Mp00027: Dyck paths to partitionInteger partitions
Mp00321: Integer partitions 2-conjugateInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St001253: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1]
=> [1]
=> [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [2,1]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> [2]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [1]
=> [1]
=> [1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [3]
=> [2,1]
=> [1,0,1,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [2]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [1]
=> [1]
=> [1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [5,2,1,1]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 2
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1
Description
The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra. For the first 196 values the statistic coincides also with the number of fixed points of $\tau \Omega^2$ composed with its inverse, see theorem 5.8. in the reference for more details. The number of Dyck paths of length n where the statistics returns zero seems to be 2^(n-1).
Matching statistic: St001722
Mp00027: Dyck paths to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00093: Dyck paths to binary wordBinary words
St001722: Binary words ⟶ ℤResult quality: 4% values known / values provided: 4%distinct values known / distinct values provided: 14%
Values
[1,0,1,0]
=> [1]
=> [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[1,1,0,0,1,0]
=> [2]
=> [1,1,0,0,1,0]
=> 110010 => 1 = 0 + 1
[1,1,0,1,0,0]
=> [1]
=> [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 10101010 => ? = 0 + 1
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => ? = 0 + 1
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => ? = 1 + 1
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 0 + 1
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 11001010 => ? = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 11001100 => ? = 0 + 1
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => ? = 1 + 1
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 11100010 => ? = 1 + 1
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> 110010 => 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1010101010 => ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1010101100 => ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1011001010 => ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1011001100 => ? = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1011010010 => ? = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1011010100 => ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1011011000 => ? = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1011100010 => ? = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1011100100 => ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1011110000 => ? = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1100101010 => ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1100101100 => ? = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1100110010 => ? = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1100110100 => ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1100111000 => ? = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1101001010 => ? = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1101001100 => ? = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1101010010 => ? = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 10101010 => ? = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => ? = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1101100010 => ? = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => ? = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1110001010 => ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1110001100 => ? = 2 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1110010010 => ? = 1 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 11001010 => ? = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 11001100 => ? = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 1 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => ? = 1 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1111000010 => ? = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 11100010 => ? = 1 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> 110010 => 1 = 0 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 101010110010 => ? = 1 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 101010110100 => ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 101010111000 => ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 101011010010 => ? = 1 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2,1]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 101011011000 => ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 101100101010 => ? = 2 + 1
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> 110010 => 1 = 0 + 1
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> 110010 => 1 = 0 + 1
[1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1]
=> [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> 110010 => 1 = 0 + 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1]
=> [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> 110010 => 1 = 0 + 1
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1]
=> [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> 110010 => 1 = 0 + 1
[1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> 110010 => 1 = 0 + 1
[1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [1]
=> [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [1]
=> [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[1,1,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[1,1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
Description
The number of minimal chains with small intervals between a binary word and the top element. A valley in a binary word is a subsequence $01$, or a trailing $0$. A peak is a subsequence $10$ or a trailing $1$. Let $P$ be the lattice on binary words of length $n$, where the covering elements of a word are obtained by replacing a valley with a peak. An interval $[w_1, w_2]$ in $P$ is small if $w_2$ is obtained from $w_1$ by replacing some valleys with peaks. This statistic counts the number of chains $w = w_1 < \dots < w_d = 1\dots 1$ to the top element of minimal length. For example, there are two such chains for the word $0110$: $$ 0110 < 1011 < 1101 < 1110 < 1111 $$ and $$ 0110 < 1010 < 1101 < 1110 < 1111. $$
Matching statistic: St000782
Mp00027: Dyck paths to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00146: Dyck paths to tunnel matchingPerfect matchings
St000782: Perfect matchings ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 14%
Values
[1,0,1,0]
=> [1]
=> [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0 + 1
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1]
=> [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> ? = 0 + 1
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> ? = 0 + 1
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> ? = 1 + 1
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> ? = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> ? = 0 + 1
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> ? = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> ? = 0 + 1
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> ? = 1 + 1
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> ? = 1 + 1
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> ? = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> ? = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> ? = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> ? = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> ? = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> ? = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> ? = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> ? = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> ? = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> ? = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> ? = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> ? = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> ? = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> ? = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> ? = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> ? = 2 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> ? = 1 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> ? = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> ? = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> ? = 1 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> ? = 1 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> ? = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> ? = 1 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> ? = 1 + 1
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
Description
The indicator function of whether a given perfect matching is an L & P matching. An L&P matching is built inductively as follows: starting with either a single edge, or a hairpin $([1,3],[2,4])$, insert a noncrossing matching or inflate an edge by a ladder, that is, a number of nested edges. The number of L&P matchings is (see [thm. 1, 2]) $$\frac{1}{2} \cdot 4^{n} + \frac{1}{n + 1}{2 \, n \choose n} - {2 \, n + 1 \choose n} + {2 \, n - 1 \choose n - 1}$$