Your data matches 4 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001266
Mp00027: Dyck paths to partitionInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00222: Dyck paths peaks-to-valleysDyck paths
St001266: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1]
=> [1,0]
=> [1,0]
=> 0
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,1,0,0,1,0]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
[1,1,0,1,0,0]
=> [1]
=> [1,0]
=> [1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> [1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 0
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 0
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 0
[1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
Description
The largest vector space dimension of an indecomposable non-projective module that is reflexive in the corresponding Nakayama algebra.
Mp00027: Dyck paths to partitionInteger partitions
Mp00095: Integer partitions to binary wordBinary words
Mp00224: Binary words runsortBinary words
St001491: Binary words ⟶ ℤResult quality: 18% values known / values provided: 18%distinct values known / distinct values provided: 40%
Values
[1,0,1,0]
=> [1]
=> 10 => 01 => 1 = 0 + 1
[1,0,1,0,1,0]
=> [2,1]
=> 1010 => 0011 => 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1]
=> 110 => 011 => 1 = 0 + 1
[1,1,0,0,1,0]
=> [2]
=> 100 => 001 => 1 = 0 + 1
[1,1,0,1,0,0]
=> [1]
=> 10 => 01 => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 101010 => 001011 => ? = 2 + 1
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 11010 => 00111 => ? = 2 + 1
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 100110 => 000111 => ? = 1 + 1
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 10110 => 00111 => ? = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1110 => 0111 => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [3,2]
=> 10100 => 00011 => ? = 0 + 1
[1,1,0,0,1,1,0,0]
=> [2,2]
=> 1100 => 0011 => 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [3,1]
=> 10010 => 00011 => ? = 0 + 1
[1,1,0,1,0,1,0,0]
=> [2,1]
=> 1010 => 0011 => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,1]
=> 110 => 011 => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3]
=> 1000 => 0001 => 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [2]
=> 100 => 001 => 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1]
=> 10 => 01 => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> 1101010 => 0010111 => ? = 3 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> 1011010 => 0010111 => ? = 3 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> 111010 => 001111 => ? = 3 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> 1100110 => 0001111 => ? = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 1010110 => 0010111 => ? = 2 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> 110110 => 001111 => ? = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 1001110 => 0001111 => ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> 101110 => 001111 => ? = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 11110 => 01111 => ? = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 1010100 => 0001011 => ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> 110100 => 000111 => ? = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> 1001100 => 0000111 => ? = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> 101100 => 000111 => ? = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 11100 => 00111 => ? = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> 1010010 => 0001011 => ? = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> 110010 => 000111 => ? = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> 1001010 => 0001011 => ? = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> 101010 => 001011 => ? = 2 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> 11010 => 00111 => ? = 2 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> 1000110 => 0000111 => ? = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> 100110 => 000111 => ? = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> 10110 => 00111 => ? = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 1110 => 0111 => 2 = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 101000 => 000011 => ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> 11000 => 00011 => ? = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> 100100 => 000011 => ? = 0 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> 10100 => 00011 => ? = 0 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> 1100 => 0011 => 1 = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 100010 => 000011 => ? = 0 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> 10010 => 00011 => ? = 0 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> 1010 => 0011 => 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> 110 => 011 => 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 10000 => 00001 => ? = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1000 => 0001 => 1 = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 100 => 001 => 1 = 0 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 10 => 01 => 1 = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2,1]
=> 1111010 => 0011111 => ? = 3 + 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1,1]
=> 1110110 => 0011111 => ? = 3 + 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1,1]
=> 1101110 => 0011111 => ? = 2 + 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,1,1,1,1]
=> 1011110 => 0011111 => ? = 1 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1]
=> 111110 => 011111 => ? = 1 + 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2]
=> 1110100 => 0001111 => ? = 2 + 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2]
=> 1101100 => 0001111 => ? = 2 + 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2]
=> 1011100 => 0001111 => ? = 1 + 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2]
=> 111100 => 001111 => ? = 1 + 1
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [3,3,3,1]
=> 1110010 => 0001111 => ? = 4 + 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1]
=> 1101010 => 0010111 => ? = 3 + 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1]
=> 1011010 => 0010111 => ? = 3 + 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1]
=> 111010 => 001111 => ? = 3 + 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [3,3,1,1]
=> 1100110 => 0001111 => ? = 2 + 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1]
=> 1010110 => 0010111 => ? = 2 + 1
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 1110 => 0111 => 2 = 1 + 1
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 1100 => 0011 => 1 = 0 + 1
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> 1010 => 0011 => 1 = 0 + 1
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 110 => 011 => 1 = 0 + 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 1000 => 0001 => 1 = 0 + 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 100 => 001 => 1 = 0 + 1
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> 10 => 01 => 1 = 0 + 1
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1]
=> 1110 => 0111 => 2 = 1 + 1
[1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [2,2]
=> 1100 => 0011 => 1 = 0 + 1
[1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [2,1]
=> 1010 => 0011 => 1 = 0 + 1
[1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1]
=> 110 => 011 => 1 = 0 + 1
[1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [3]
=> 1000 => 0001 => 1 = 0 + 1
[1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2]
=> 100 => 001 => 1 = 0 + 1
[1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1]
=> 10 => 01 => 1 = 0 + 1
[1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1]
=> 1110 => 0111 => 2 = 1 + 1
[1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [2,2]
=> 1100 => 0011 => 1 = 0 + 1
[1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [2,1]
=> 1010 => 0011 => 1 = 0 + 1
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1]
=> 110 => 011 => 1 = 0 + 1
[1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [3]
=> 1000 => 0001 => 1 = 0 + 1
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [2]
=> 100 => 001 => 1 = 0 + 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1]
=> 10 => 01 => 1 = 0 + 1
[1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1]
=> 1110 => 0111 => 2 = 1 + 1
[1,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,0]
=> [2,2]
=> 1100 => 0011 => 1 = 0 + 1
[1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [2,1]
=> 1010 => 0011 => 1 = 0 + 1
[1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,1]
=> 110 => 011 => 1 = 0 + 1
[1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0]
=> [3]
=> 1000 => 0001 => 1 = 0 + 1
[1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [2]
=> 100 => 001 => 1 = 0 + 1
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1]
=> 10 => 01 => 1 = 0 + 1
[1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1]
=> 110 => 011 => 1 = 0 + 1
[1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [2]
=> 100 => 001 => 1 = 0 + 1
[1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1]
=> 110 => 011 => 1 = 0 + 1
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset. Let $A_n=K[x]/(x^n)$. We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.
Mp00027: Dyck paths to partitionInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00093: Dyck paths to binary wordBinary words
St001722: Binary words ⟶ ℤResult quality: 18% values known / values provided: 18%distinct values known / distinct values provided: 40%
Values
[1,0,1,0]
=> [1]
=> [1,0]
=> 10 => 1 = 0 + 1
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1100 => 1 = 0 + 1
[1,1,0,0,1,0]
=> [2]
=> [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,1,0,1,0,0]
=> [1]
=> [1,0]
=> 10 => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1011100100 => ? = 2 + 1
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 11100100 => ? = 2 + 1
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => ? = 1 + 1
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 0 + 1
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => ? = 0 + 1
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1100 => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> 10 => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 111011000100 => ? = 3 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> 101111000100 => ? = 3 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1111000100 => ? = 3 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 111010010100 => ? = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> 101110010100 => ? = 2 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1110010100 => ? = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 101011010100 => ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1011010100 => ? = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 11010100 => ? = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 101110110000 => ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1110110000 => ? = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 101011110000 => ? = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1011110000 => ? = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 11110000 => ? = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> 101110100100 => ? = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1110100100 => ? = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 101011100100 => ? = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1011100100 => ? = 2 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 11100100 => ? = 2 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 101010110100 => ? = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => ? = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2 = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> 11101000 => ? = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1010111000 => ? = 0 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 0 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1 = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1010101100 => ? = 0 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => ? = 0 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1100 => 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 10101010 => ? = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [1,0]
=> 10 => 1 = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 111101000100 => ? = 3 + 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 111100010100 => ? = 3 + 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 111001010100 => ? = 2 + 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 101101010100 => ? = 1 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1101010100 => ? = 1 + 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 111110010000 => ? = 2 + 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 111011010000 => ? = 2 + 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 101111010000 => ? = 1 + 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1111010000 => ? = 1 + 1
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [3,3,3,1]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 111110000100 => ? = 4 + 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 111011000100 => ? = 3 + 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> 101111000100 => ? = 3 + 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1111000100 => ? = 3 + 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 111010010100 => ? = 2 + 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> 101110010100 => ? = 2 + 1
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2 = 1 + 1
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1 = 0 + 1
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1100 => 1 = 0 + 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> [1,0]
=> 10 => 1 = 0 + 1
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2 = 1 + 1
[1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1 = 0 + 1
[1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1100 => 1 = 0 + 1
[1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [3]
=> [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2]
=> [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1]
=> [1,0]
=> 10 => 1 = 0 + 1
[1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2 = 1 + 1
[1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1 = 0 + 1
[1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1100 => 1 = 0 + 1
[1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [3]
=> [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [2]
=> [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1]
=> [1,0]
=> 10 => 1 = 0 + 1
[1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2 = 1 + 1
[1,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1 = 0 + 1
[1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1100 => 1 = 0 + 1
[1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0]
=> [3]
=> [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [2]
=> [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1]
=> [1,0]
=> 10 => 1 = 0 + 1
[1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1100 => 1 = 0 + 1
[1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [2]
=> [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1100 => 1 = 0 + 1
Description
The number of minimal chains with small intervals between a binary word and the top element. A valley in a binary word is a subsequence $01$, or a trailing $0$. A peak is a subsequence $10$ or a trailing $1$. Let $P$ be the lattice on binary words of length $n$, where the covering elements of a word are obtained by replacing a valley with a peak. An interval $[w_1, w_2]$ in $P$ is small if $w_2$ is obtained from $w_1$ by replacing some valleys with peaks. This statistic counts the number of chains $w = w_1 < \dots < w_d = 1\dots 1$ to the top element of minimal length. For example, there are two such chains for the word $0110$: $$ 0110 < 1011 < 1101 < 1110 < 1111 $$ and $$ 0110 < 1010 < 1101 < 1110 < 1111. $$
Matching statistic: St000782
Mp00027: Dyck paths to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00146: Dyck paths to tunnel matchingPerfect matchings
St000782: Perfect matchings ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 20%
Values
[1,0,1,0]
=> [1]
=> [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0 + 1
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1]
=> [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> ? = 2 + 1
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> ? = 2 + 1
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> ? = 1 + 1
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> ? = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> ? = 1 + 1
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> ? = 0 + 1
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> ? = 0 + 1
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> ? = 0 + 1
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> ? = 0 + 1
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> ? = 3 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> ? = 3 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> ? = 3 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> ? = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> ? = 2 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> ? = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> ? = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> ? = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> ? = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> ? = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> ? = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> ? = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> ? = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> ? = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> ? = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> ? = 2 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> ? = 2 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> ? = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> ? = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> ? = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> ? = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> ? = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> ? = 0 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> ? = 0 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> ? = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> ? = 0 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> ? = 0 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> ? = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> ? = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]
=> ? = 3 + 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,10),(8,9)]
=> ? = 3 + 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,6),(7,10),(8,9)]
=> ? = 2 + 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> ? = 1 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> ? = 1 + 1
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
Description
The indicator function of whether a given perfect matching is an L & P matching. An L&P matching is built inductively as follows: starting with either a single edge, or a hairpin $([1,3],[2,4])$, insert a noncrossing matching or inflate an edge by a ladder, that is, a number of nested edges. The number of L&P matchings is (see [thm. 1, 2]) $$\frac{1}{2} \cdot 4^{n} + \frac{1}{n + 1}{2 \, n \choose n} - {2 \, n + 1 \choose n} + {2 \, n - 1 \choose n - 1}$$