searching the database
Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001271
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> 1
([],3)
=> 0
([(1,2)],3)
=> 0
([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> 0
([(2,3)],4)
=> 0
([(1,3),(2,3)],4)
=> 0
([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],5)
=> 0
([(3,4)],5)
=> 0
([(2,4),(3,4)],5)
=> 0
([(1,4),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3)],5)
=> 0
([(1,4),(2,3),(3,4)],5)
=> 0
([(0,1),(2,4),(3,4)],5)
=> 1
([(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
Description
The competition number of a graph.
The competition graph of a digraph D is a (simple undirected) graph which has the same vertex set as D and has an edge between x and y if and only if there exists a vertex v in D such that (x,v) and (y,v) are arcs of D. For any graph, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) is the smallest number of such isolated vertices.
Matching statistic: St001392
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001392: Integer partitions ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 25%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001392: Integer partitions ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 25%
Values
([],1)
=> [1]
=> []
=> ?
=> ? = 0
([],2)
=> [1,1]
=> [1]
=> []
=> ? = 0
([(0,1)],2)
=> [2]
=> []
=> ?
=> ? = 1
([],3)
=> [1,1,1]
=> [1,1]
=> [1]
=> 0
([(1,2)],3)
=> [2,1]
=> [1]
=> []
=> ? = 0
([(0,2),(1,2)],3)
=> [3]
=> []
=> ?
=> ? = 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ?
=> ? = 1
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 0
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? = 0
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> []
=> ? = 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? = 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ?
=> ? = 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? = 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ?
=> ? = 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> []
=> ? = 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> []
=> ? = 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> []
=> ? = 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> []
=> ? = 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 0
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 0
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 0
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 0
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 0
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 0
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 0
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [3,1]
=> [1]
=> 0
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 0
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 0
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 0
([(1,6),(2,5),(3,4)],7)
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
([(2,6),(3,5),(4,5),(4,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 0
([(1,2),(3,6),(4,5),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 0
([(0,3),(1,2),(4,6),(5,6)],7)
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 0
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 0
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 0
Description
The largest nonnegative integer which is not a part and is smaller than the largest part of the partition.
Matching statistic: St000667
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000667: Integer partitions ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 25%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000667: Integer partitions ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 25%
Values
([],1)
=> [1]
=> []
=> ?
=> ? = 0 + 1
([],2)
=> [1,1]
=> [1]
=> []
=> ? = 0 + 1
([(0,1)],2)
=> [2]
=> []
=> ?
=> ? = 1 + 1
([],3)
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(1,2)],3)
=> [2,1]
=> [1]
=> []
=> ? = 0 + 1
([(0,2),(1,2)],3)
=> [3]
=> []
=> ?
=> ? = 1 + 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ?
=> ? = 1 + 1
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1 + 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> []
=> ? = 1 + 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1 + 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? = 0 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ?
=> ? = 2 + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1 + 1
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0 + 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 1 + 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 1 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? = 3 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 1 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ?
=> ? = 2 + 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> []
=> ? = 0 + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 1 + 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1 = 0 + 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> []
=> ? = 0 + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> []
=> ? = 1 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 1 + 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> []
=> ? = 0 + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [2]
=> 2 = 1 + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1 = 0 + 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1 = 0 + 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [3,1]
=> [1]
=> 1 = 0 + 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(1,6),(2,5),(3,4)],7)
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1 = 0 + 1
([(2,6),(3,5),(4,5),(4,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
([(0,3),(1,2),(4,6),(5,6)],7)
=> [3,2,2]
=> [2,2]
=> [2]
=> 2 = 1 + 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1 = 0 + 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
Description
The greatest common divisor of the parts of the partition.
Matching statistic: St001571
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001571: Integer partitions ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 25%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001571: Integer partitions ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 25%
Values
([],1)
=> [1]
=> []
=> ?
=> ? = 0 + 1
([],2)
=> [1,1]
=> [1]
=> []
=> ? = 0 + 1
([(0,1)],2)
=> [2]
=> []
=> ?
=> ? = 1 + 1
([],3)
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(1,2)],3)
=> [2,1]
=> [1]
=> []
=> ? = 0 + 1
([(0,2),(1,2)],3)
=> [3]
=> []
=> ?
=> ? = 1 + 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ?
=> ? = 1 + 1
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1 + 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> []
=> ? = 1 + 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1 + 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? = 0 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ?
=> ? = 2 + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1 + 1
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0 + 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 1 + 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 1 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? = 3 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 1 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ?
=> ? = 2 + 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 + 1
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> []
=> ? = 0 + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 1 + 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1 = 0 + 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> []
=> ? = 0 + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> []
=> ? = 1 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 1 + 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> []
=> ? = 0 + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [2]
=> 2 = 1 + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1 = 0 + 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1 = 0 + 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [3,1]
=> [1]
=> 1 = 0 + 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(1,6),(2,5),(3,4)],7)
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1 = 0 + 1
([(2,6),(3,5),(4,5),(4,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
([(0,3),(1,2),(4,6),(5,6)],7)
=> [3,2,2]
=> [2,2]
=> [2]
=> 2 = 1 + 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1 = 0 + 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
Description
The Cartan determinant of the integer partition.
Let p=[p1,...,pr] be a given integer partition with highest part t. Let A=K[x]/(xt) be the finite dimensional algebra over the field K and M the direct sum of the indecomposable A-modules of vector space dimension pi for each i. Then the Cartan determinant of p is the Cartan determinant of the endomorphism algebra of M over A.
Explicitly, this is the determinant of the matrix (min, where \bar p is the set of distinct parts of the partition.
Matching statistic: St000478
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000478: Integer partitions ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 25%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000478: Integer partitions ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 25%
Values
([],1)
=> [1]
=> []
=> ?
=> ? = 0
([],2)
=> [1,1]
=> [1]
=> []
=> ? = 0
([(0,1)],2)
=> [2]
=> []
=> ?
=> ? = 1
([],3)
=> [1,1,1]
=> [1,1]
=> [1]
=> ? = 0
([(1,2)],3)
=> [2,1]
=> [1]
=> []
=> ? = 0
([(0,2),(1,2)],3)
=> [3]
=> []
=> ?
=> ? = 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ?
=> ? = 1
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 0
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? = 0
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> []
=> ? = 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? = 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ?
=> ? = 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> ? = 0
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> ? = 0
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> ? = 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? = 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ?
=> ? = 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> ? = 0
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(1,6),(2,5),(3,4)],7)
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
([(0,3),(1,2),(4,6),(5,6)],7)
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
Description
Another weight of a partition according to Alladi.
According to Theorem 3.4 (Alladi 2012) in [1]
\sum_{\pi\in GG_1(r)} w_1(\pi)
equals the number of partitions of r whose odd parts are all distinct. GG_1(r) is the set of partitions of r where consecutive entries differ by at least 2, and consecutive even entries differ by at least 4.
Matching statistic: St000934
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000934: Integer partitions ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 25%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000934: Integer partitions ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 25%
Values
([],1)
=> [1]
=> []
=> ?
=> ? = 0
([],2)
=> [1,1]
=> [1]
=> []
=> ? = 0
([(0,1)],2)
=> [2]
=> []
=> ?
=> ? = 1
([],3)
=> [1,1,1]
=> [1,1]
=> [1]
=> ? = 0
([(1,2)],3)
=> [2,1]
=> [1]
=> []
=> ? = 0
([(0,2),(1,2)],3)
=> [3]
=> []
=> ?
=> ? = 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ?
=> ? = 1
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 0
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? = 0
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> []
=> ? = 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? = 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ?
=> ? = 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> ? = 0
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> ? = 0
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> ? = 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? = 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ?
=> ? = 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> ? = 0
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(1,6),(2,5),(3,4)],7)
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
([(0,3),(1,2),(4,6),(5,6)],7)
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
Description
The 2-degree of an integer partition.
For an integer partition \lambda, this is given by the exponent of 2 in the Gram determinant of the integal Specht module of the symmetric group indexed by \lambda.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!