searching the database
Your data matches 45 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000847
(load all 12 compositions to match this statistic)
(load all 12 compositions to match this statistic)
St000847: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
0 => 1
1 => 1
00 => 1
01 => 1
10 => 1
11 => 1
000 => 1
001 => 1
010 => 2
011 => 1
100 => 1
101 => 2
110 => 1
111 => 1
0101 => 3
1010 => 3
01010 => 6
10101 => 6
010101 => 11
101010 => 11
Description
The number of standard Young tableaux whose descent set is the binary word.
A descent in a standard Young tableau is an entry i such that i+1 appears in a lower row in English notation.
For example, the tableaux [[1,2,4],[3]] and [[1,2],[3,4]] are those with descent set {2}, corresponding to the binary word 010.
Matching statistic: St001282
Mp00158: Binary words —alternating inverse⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St001282: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00262: Binary words —poset of factors⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St001282: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
0 => 0 => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
1 => 1 => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
00 => 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
01 => 00 => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1
10 => 11 => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1
11 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
000 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 1
001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
010 => 000 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
011 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
100 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
101 => 111 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
110 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
111 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 1
0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 6
10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 6
010101 => 000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 11
101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 11
Description
The number of graphs with the same chromatic polynomial.
Matching statistic: St001740
Mp00158: Binary words —alternating inverse⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St001740: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00262: Binary words —poset of factors⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St001740: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
0 => 0 => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
1 => 1 => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
00 => 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
01 => 00 => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1
10 => 11 => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1
11 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
000 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 1
001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
010 => 000 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
011 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
100 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
101 => 111 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
110 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
111 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 1
0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 6
10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 6
010101 => 000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 11
101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 11
Description
The number of graphs with the same symmetric edge polytope as the given graph.
The symmetric edge polytope of a graph on n vertices is the polytope in Rn defined as the convex hull of ei−ej and ej−ei for each edge (i,j), where e1,…,en denotes the standard basis.
Matching statistic: St000570
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St000570: Permutations ⟶ ℤResult quality: 80% ●values known / values provided: 90%●distinct values known / distinct values provided: 80%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St000570: Permutations ⟶ ℤResult quality: 80% ●values known / values provided: 90%●distinct values known / distinct values provided: 80%
Values
0 => [2] => [1,1,0,0]
=> [2,3,1] => 1
1 => [1,1] => [1,0,1,0]
=> [3,1,2] => 1
00 => [3] => [1,1,1,0,0,0]
=> [2,3,4,1] => 1
01 => [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 1
10 => [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> [4,1,2,3] => 1
000 => [4] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 1
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 1
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 2
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 1
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 2
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 1
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 3
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 3
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => 6
10101 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => 6
010101 => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,8,5,7] => ? = 11
101010 => [1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,7,4,8,6] => ? = 11
Description
The Edelman-Greene number of a permutation.
This is the sum of the coefficients of the expansion of the Stanley symmetric function Fω in Schur functions. Equivalently, this is the number of semistandard tableaux whose column words - obtained by reading up columns starting with the leftmost - are reduced words for ω.
Matching statistic: St000034
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000034: Permutations ⟶ ℤResult quality: 80% ●values known / values provided: 90%●distinct values known / distinct values provided: 80%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000034: Permutations ⟶ ℤResult quality: 80% ●values known / values provided: 90%●distinct values known / distinct values provided: 80%
Values
0 => [1] => [1,0]
=> [1] => 0 = 1 - 1
1 => [1] => [1,0]
=> [1] => 0 = 1 - 1
00 => [2] => [1,1,0,0]
=> [1,2] => 0 = 1 - 1
01 => [1,1] => [1,0,1,0]
=> [2,1] => 0 = 1 - 1
10 => [1,1] => [1,0,1,0]
=> [2,1] => 0 = 1 - 1
11 => [2] => [1,1,0,0]
=> [1,2] => 0 = 1 - 1
000 => [3] => [1,1,1,0,0,0]
=> [1,2,3] => 0 = 1 - 1
001 => [2,1] => [1,1,0,0,1,0]
=> [3,1,2] => 0 = 1 - 1
010 => [1,1,1] => [1,0,1,0,1,0]
=> [3,2,1] => 1 = 2 - 1
011 => [1,2] => [1,0,1,1,0,0]
=> [2,3,1] => 0 = 1 - 1
100 => [1,2] => [1,0,1,1,0,0]
=> [2,3,1] => 0 = 1 - 1
101 => [1,1,1] => [1,0,1,0,1,0]
=> [3,2,1] => 1 = 2 - 1
110 => [2,1] => [1,1,0,0,1,0]
=> [3,1,2] => 0 = 1 - 1
111 => [3] => [1,1,1,0,0,0]
=> [1,2,3] => 0 = 1 - 1
0101 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 2 = 3 - 1
1010 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 2 = 3 - 1
01010 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => 5 = 6 - 1
10101 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => 5 = 6 - 1
010101 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => ? = 11 - 1
101010 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => ? = 11 - 1
Description
The maximum defect over any reduced expression for a permutation and any subexpression.
Matching statistic: St001327
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
0 => ([(0,1)],2)
=> ([],2)
=> 0 = 1 - 1
1 => ([(0,1)],2)
=> ([],2)
=> 0 = 1 - 1
00 => ([(0,2),(2,1)],3)
=> ([],3)
=> 0 = 1 - 1
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
11 => ([(0,2),(2,1)],3)
=> ([],3)
=> 0 = 1 - 1
000 => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = 1 - 1
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 0 = 1 - 1
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 1 = 2 - 1
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 0 = 1 - 1
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 0 = 1 - 1
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 1 = 2 - 1
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 0 = 1 - 1
111 => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = 1 - 1
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(2,7),(3,6),(4,5)],8)
=> ? = 3 - 1
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(2,7),(3,6),(4,5)],8)
=> ? = 3 - 1
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(2,9),(3,8),(4,7),(5,6)],10)
=> ? = 6 - 1
10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(2,9),(3,8),(4,7),(5,6)],10)
=> ? = 6 - 1
010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ([(2,11),(3,10),(4,9),(5,8),(6,7)],12)
=> ? = 11 - 1
101010 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ([(2,11),(3,10),(4,9),(5,8),(6,7)],12)
=> ? = 11 - 1
Description
The minimal number of occurrences of the split-pattern in a linear ordering of the vertices of the graph.
A graph is a split graph if and only if in any linear ordering of its vertices, there are no three vertices a<b<c such that (a,b) is an edge and (b,c) is not an edge. This statistic is the minimal number of occurrences of this pattern, in the set of all linear orderings of the vertices.
Matching statistic: St001329
Values
0 => ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
1 => ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
00 => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0 = 1 - 1
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0 = 1 - 1
11 => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
000 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 0 = 1 - 1
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 1 = 2 - 1
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 0 = 1 - 1
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 0 = 1 - 1
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 1 = 2 - 1
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 0 = 1 - 1
111 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 3 - 1
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 3 - 1
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 6 - 1
10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 6 - 1
010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ([(0,4),(0,5),(1,2),(1,3),(2,8),(2,9),(3,8),(3,9),(4,10),(4,11),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11)],12)
=> ? = 11 - 1
101010 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ([(0,4),(0,5),(1,2),(1,3),(2,8),(2,9),(3,8),(3,9),(4,10),(4,11),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11)],12)
=> ? = 11 - 1
Description
The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph.
A graph is outerplanar if and only if in any linear ordering of its vertices, there are no four vertices a<b<c<d such that (a,c) and (b,d) are edges. This statistic is the minimal number of occurrences of this pattern, in the set of all linear orderings of the vertices.
Matching statistic: St001656
Values
0 => ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
1 => ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
00 => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 1 + 1
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 1 + 1
11 => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
000 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 1 + 1
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 2 + 1
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 1 + 1
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 1 + 1
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 2 + 1
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 1 + 1
111 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 3 + 1
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 3 + 1
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 6 + 1
10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 6 + 1
010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ([(0,4),(0,5),(1,2),(1,3),(2,8),(2,9),(3,8),(3,9),(4,10),(4,11),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11)],12)
=> ? = 11 + 1
101010 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ([(0,4),(0,5),(1,2),(1,3),(2,8),(2,9),(3,8),(3,9),(4,10),(4,11),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11)],12)
=> ? = 11 + 1
Description
The monophonic position number of a graph.
A subset M of the vertex set of a graph is a monophonic position set if no three vertices of M lie on a common induced path. The monophonic position number is the size of a largest monophonic position set.
Matching statistic: St001871
Values
0 => ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
1 => ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
00 => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0 = 1 - 1
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0 = 1 - 1
11 => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
000 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 0 = 1 - 1
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 1 = 2 - 1
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 0 = 1 - 1
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 0 = 1 - 1
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 1 = 2 - 1
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 0 = 1 - 1
111 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 3 - 1
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 3 - 1
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 6 - 1
10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 6 - 1
010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ([(0,4),(0,5),(1,2),(1,3),(2,8),(2,9),(3,8),(3,9),(4,10),(4,11),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11)],12)
=> ? = 11 - 1
101010 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ([(0,4),(0,5),(1,2),(1,3),(2,8),(2,9),(3,8),(3,9),(4,10),(4,11),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11)],12)
=> ? = 11 - 1
Description
The number of triconnected components of a graph.
A connected graph is '''triconnected''' or '''3-vertex connected''' if it cannot be disconnected by removing two or fewer vertices. An arbitrary connected graph can be decomposed as a union of biconnected (2-vertex connected) graphs, known as '''blocks''', and each biconnected graph can be decomposed as a union of components with are either a cycle (type "S"), a cocyle (type "P"), or triconnected (type "R"). The decomposition of a biconnected graph into these components is known as the '''SPQR-tree''' of the graph.
Matching statistic: St000322
Values
0 => ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
1 => ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
00 => ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 1 - 1
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
11 => ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 1 - 1
000 => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
111 => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(2,7),(3,6),(4,5)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 - 1
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(2,7),(3,6),(4,5)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 - 1
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(2,9),(3,8),(4,7),(5,6)],10)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 6 - 1
10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(2,9),(3,8),(4,7),(5,6)],10)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 6 - 1
010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ([(2,11),(3,10),(4,9),(5,8),(6,7)],12)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 11 - 1
101010 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ([(2,11),(3,10),(4,9),(5,8),(6,7)],12)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 11 - 1
Description
The skewness of a graph.
For a graph G, the '''skewness''' of G is the minimum number of edges of G whose removal results in a planar graph.
The following 35 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000323The minimal crossing number of a graph. St000370The genus of a graph. St001305The number of induced cycles on four vertices in a graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001271The competition number of a graph. St000741The Colin de Verdière graph invariant. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001200The number of simple modules in eAe with projective dimension at most 2 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St000181The number of connected components of the Hasse diagram for the poset. St001890The maximum magnitude of the Möbius function of a poset. St001964The interval resolution global dimension of a poset. St001621The number of atoms of a lattice. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001625The Möbius invariant of a lattice. St001199The dominant dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001198The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001206The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA. St000264The girth of a graph, which is not a tree. St000260The radius of a connected graph. St001722The number of minimal chains with small intervals between a binary word and the top element. St000285The size of the preimage of the map 'to inverse des composition' from Parking functions to Integer compositions. St000456The monochromatic index of a connected graph. St000762The sum of the positions of the weak records of an integer composition. St000782The indicator function of whether a given perfect matching is an L & P matching. St001118The acyclic chromatic index of a graph. St001498The normalised height of a Nakayama algebra with magnitude 1. St000455The second largest eigenvalue of a graph if it is integral. St000464The Schultz index of a connected graph. St000817The sum of the entries in the column specified by the composition of the change of basis matrix from dual immaculate quasisymmetric functions to monomial quasisymmetric functions. St000818The sum of the entries in the column specified by the composition of the change of basis matrix from quasisymmetric Schur functions to monomial quasisymmetric functions. St001545The second Elser number of a connected graph. St000806The semiperimeter of the associated bargraph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!