Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001400: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> 2
[2]
=> 3
[1,1]
=> 3
[3]
=> 4
[2,1]
=> 6
[1,1,1]
=> 4
[4]
=> 5
[3,1]
=> 9
[2,2]
=> 6
[2,1,1]
=> 9
[1,1,1,1]
=> 5
[5]
=> 6
[4,1]
=> 12
[3,2]
=> 12
[3,1,1]
=> 14
[2,2,1]
=> 12
[2,1,1,1]
=> 12
[1,1,1,1,1]
=> 6
[6]
=> 7
[5,1]
=> 15
[4,2]
=> 18
[4,1,1]
=> 19
[3,3]
=> 10
[3,2,1]
=> 26
[3,1,1,1]
=> 19
[2,2,2]
=> 10
[2,2,1,1]
=> 18
[2,1,1,1,1]
=> 15
[1,1,1,1,1,1]
=> 7
[7]
=> 8
[6,1]
=> 18
[5,2]
=> 24
[5,1,1]
=> 24
[4,3]
=> 20
[4,2,1]
=> 40
[4,1,1,1]
=> 26
[3,3,1]
=> 24
[3,2,2]
=> 24
[3,2,1,1]
=> 40
[3,1,1,1,1]
=> 24
[2,2,2,1]
=> 20
[2,2,1,1,1]
=> 24
[2,1,1,1,1,1]
=> 18
[1,1,1,1,1,1,1]
=> 8
[8]
=> 9
[7,1]
=> 21
[6,2]
=> 30
[6,1,1]
=> 29
[5,3]
=> 30
[5,2,1]
=> 54
Description
The total number of Littlewood-Richardson tableaux of given shape. This is the multiplicity of the Schur function $s_\lambda$ in $\sum_{\mu, \nu} s_\mu s_\nu$, where the sum is over all partitions $\mu$ and $\nu$.