searching the database
Your data matches 24 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001491
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00094: Integer compositions —to binary word⟶ Binary words
Mp00280: Binary words —path rowmotion⟶ Binary words
St001491: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00094: Integer compositions —to binary word⟶ Binary words
Mp00280: Binary words —path rowmotion⟶ Binary words
St001491: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
00 => [2] => 10 => 11 => 2
11 => [2] => 10 => 11 => 2
000 => [3] => 100 => 011 => 1
001 => [2,1] => 101 => 110 => 1
011 => [1,2] => 110 => 111 => 3
100 => [1,2] => 110 => 111 => 3
110 => [2,1] => 101 => 110 => 1
111 => [3] => 100 => 011 => 1
0000 => [4] => 1000 => 0011 => 1
0001 => [3,1] => 1001 => 0110 => 2
0010 => [2,1,1] => 1011 => 1100 => 1
0011 => [2,2] => 1010 => 1101 => 2
0100 => [1,1,2] => 1110 => 1111 => 4
0110 => [1,2,1] => 1101 => 1110 => 2
0111 => [1,3] => 1100 => 0111 => 2
1000 => [1,3] => 1100 => 0111 => 2
1001 => [1,2,1] => 1101 => 1110 => 2
1011 => [1,1,2] => 1110 => 1111 => 4
1100 => [2,2] => 1010 => 1101 => 2
1101 => [2,1,1] => 1011 => 1100 => 1
1110 => [3,1] => 1001 => 0110 => 2
1111 => [4] => 1000 => 0011 => 1
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset.
Let $A_n=K[x]/(x^n)$.
We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.
Matching statistic: St000456
Mp00136: Binary words —rotate back-to-front⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000456: Graphs ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 100%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000456: Graphs ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 100%
Values
00 => 00 => [2] => ([],2)
=> ? = 2
11 => 11 => [2] => ([],2)
=> ? = 2
000 => 000 => [3] => ([],3)
=> ? = 1
001 => 100 => [1,2] => ([(1,2)],3)
=> ? = 1
011 => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
100 => 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
110 => 011 => [1,2] => ([(1,2)],3)
=> ? = 1
111 => 111 => [3] => ([],3)
=> ? = 1
0000 => 0000 => [4] => ([],4)
=> ? = 1
0001 => 1000 => [1,3] => ([(2,3)],4)
=> ? = 2
0010 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
0011 => 1001 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
0100 => 0010 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
0110 => 0011 => [2,2] => ([(1,3),(2,3)],4)
=> ? = 2
0111 => 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 2
1000 => 0100 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 2
1001 => 1100 => [2,2] => ([(1,3),(2,3)],4)
=> ? = 2
1011 => 1101 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
1100 => 0110 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
1101 => 1110 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
1110 => 0111 => [1,3] => ([(2,3)],4)
=> ? = 2
1111 => 1111 => [4] => ([],4)
=> ? = 1
Description
The monochromatic index of a connected graph.
This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path.
For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Matching statistic: St000771
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00315: Integer compositions —inverse Foata bijection⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 50%
Mp00315: Integer compositions —inverse Foata bijection⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 50%
Values
00 => [2] => [2] => ([],2)
=> ? = 2
11 => [2] => [2] => ([],2)
=> ? = 2
000 => [3] => [3] => ([],3)
=> ? = 1
001 => [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
011 => [1,2] => [1,2] => ([(1,2)],3)
=> ? = 3
100 => [1,2] => [1,2] => ([(1,2)],3)
=> ? = 3
110 => [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
111 => [3] => [3] => ([],3)
=> ? = 1
0000 => [4] => [4] => ([],4)
=> ? = 1
0001 => [3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
0010 => [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
0011 => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 2
0100 => [1,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 4
0110 => [1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
0111 => [1,3] => [1,3] => ([(2,3)],4)
=> ? = 2
1000 => [1,3] => [1,3] => ([(2,3)],4)
=> ? = 2
1001 => [1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
1011 => [1,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 4
1100 => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 2
1101 => [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
1110 => [3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
1111 => [4] => [4] => ([],4)
=> ? = 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St000850
Mp00158: Binary words —alternating inverse⟶ Binary words
Mp00135: Binary words —rotate front-to-back⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St000850: Posets ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 75%
Mp00135: Binary words —rotate front-to-back⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St000850: Posets ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 75%
Values
00 => 01 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
11 => 10 => 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
000 => 010 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0 = 1 - 1
001 => 011 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0 = 1 - 1
011 => 001 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2 = 3 - 1
100 => 110 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2 = 3 - 1
110 => 100 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0 = 1 - 1
111 => 101 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0 = 1 - 1
0000 => 0101 => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 1 - 1
0001 => 0100 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
0010 => 0111 => 1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 - 1
0011 => 0110 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 - 1
0100 => 0001 => 0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 4 - 1
0110 => 0011 => 0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 2 - 1
0111 => 0010 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2 - 1
1000 => 1101 => 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2 - 1
1001 => 1100 => 1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 2 - 1
1011 => 1110 => 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 4 - 1
1100 => 1001 => 0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 - 1
1101 => 1000 => 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 - 1
1110 => 1011 => 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
1111 => 1010 => 0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 1 - 1
Description
The number of 1/2-balanced pairs in a poset.
A pair of elements $x,y$ of a poset is $\alpha$-balanced if the proportion of linear extensions where $x$ comes before $y$ is between $\alpha$ and $1-\alpha$.
Kislitsyn [1] conjectured that every poset which is not a chain has a $1/3$-balanced pair. Brightwell, Felsner and Trotter [2] show that at least a $(1-\sqrt 5)/10$-balanced pair exists in posets which are not chains.
Olson and Sagan [3] exhibit various posets that have a $1/2$-balanced pair.
Matching statistic: St000741
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
00 => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
11 => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
000 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 1
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 3
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 3
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 1
111 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ? = 1
0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ? = 2
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ? = 4
0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(0,5),(0,6),(1,7),(1,8),(2,5),(2,6),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8)],9)
=> ? = 2
0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(0,5),(0,6),(1,7),(1,8),(2,5),(2,6),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8)],9)
=> ? = 2
1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ? = 4
1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ? = 2
1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ? = 1
1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
Description
The Colin de Verdière graph invariant.
Matching statistic: St001630
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
00 => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
11 => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
000 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 1
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 3
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 3
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 1
111 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 2
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,9),(2,14),(2,15),(3,13),(3,14),(4,17),(5,12),(6,11),(7,10),(8,7),(8,17),(9,4),(9,8),(10,13),(10,15),(11,16),(12,16),(13,18),(14,6),(14,18),(15,5),(15,18),(16,1),(17,2),(17,3),(17,10),(18,11),(18,12)],19)
=> ? = 1
0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ? = 2
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,9),(2,14),(2,15),(3,13),(3,14),(4,17),(5,12),(6,11),(7,10),(8,7),(8,17),(9,4),(9,8),(10,13),(10,15),(11,16),(12,16),(13,18),(14,6),(14,18),(15,5),(15,18),(16,1),(17,2),(17,3),(17,10),(18,11),(18,12)],19)
=> ? = 4
0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(0,9),(2,17),(3,11),(3,15),(4,11),(4,14),(5,12),(6,13),(7,10),(8,7),(8,17),(9,2),(9,8),(10,14),(10,15),(11,18),(12,16),(13,16),(14,5),(14,18),(15,6),(15,18),(16,1),(17,3),(17,4),(17,10),(18,12),(18,13)],19)
=> ? = 2
0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 2
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 2
1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(0,9),(2,17),(3,11),(3,15),(4,11),(4,14),(5,12),(6,13),(7,10),(8,7),(8,17),(9,2),(9,8),(10,14),(10,15),(11,18),(12,16),(13,16),(14,5),(14,18),(15,6),(15,18),(16,1),(17,3),(17,4),(17,10),(18,12),(18,13)],19)
=> ? = 2
1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,9),(2,14),(2,15),(3,13),(3,14),(4,17),(5,12),(6,11),(7,10),(8,7),(8,17),(9,4),(9,8),(10,13),(10,15),(11,16),(12,16),(13,18),(14,6),(14,18),(15,5),(15,18),(16,1),(17,2),(17,3),(17,10),(18,11),(18,12)],19)
=> ? = 4
1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ? = 2
1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,9),(2,14),(2,15),(3,13),(3,14),(4,17),(5,12),(6,11),(7,10),(8,7),(8,17),(9,4),(9,8),(10,13),(10,15),(11,16),(12,16),(13,18),(14,6),(14,18),(15,5),(15,18),(16,1),(17,2),(17,3),(17,10),(18,11),(18,12)],19)
=> ? = 1
1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 2
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Matching statistic: St000327
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00104: Binary words —reverse⟶ Binary words
Mp00200: Binary words —twist⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St000327: Posets ⟶ ℤResult quality: 27% ●values known / values provided: 27%●distinct values known / distinct values provided: 50%
Mp00200: Binary words —twist⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St000327: Posets ⟶ ℤResult quality: 27% ●values known / values provided: 27%●distinct values known / distinct values provided: 50%
Values
00 => 00 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 2 + 2
11 => 11 => 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 2 + 2
000 => 000 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 1 + 2
001 => 100 => 000 => ([(0,3),(2,1),(3,2)],4)
=> 3 = 1 + 2
011 => 110 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ? = 3 + 2
100 => 001 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ? = 3 + 2
110 => 011 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 3 = 1 + 2
111 => 111 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 1 + 2
0000 => 0000 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 2
0001 => 1000 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
0010 => 0100 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 2
0011 => 1100 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2 + 2
0100 => 0010 => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 4 + 2
0110 => 0110 => 1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 + 2
0111 => 1110 => 0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 2 + 2
1000 => 0001 => 1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 2 + 2
1001 => 1001 => 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 + 2
1011 => 1101 => 0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 4 + 2
1100 => 0011 => 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2 + 2
1101 => 1011 => 0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 2
1110 => 0111 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
1111 => 1111 => 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 2
Description
The number of cover relations in a poset.
Equivalently, this is also the number of edges in the Hasse diagram [1].
Matching statistic: St000668
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000668: Integer partitions ⟶ ℤResult quality: 18% ●values known / values provided: 18%●distinct values known / distinct values provided: 50%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000668: Integer partitions ⟶ ℤResult quality: 18% ●values known / values provided: 18%●distinct values known / distinct values provided: 50%
Values
00 => [2] => [[2],[]]
=> []
=> ? = 2
11 => [2] => [[2],[]]
=> []
=> ? = 2
000 => [3] => [[3],[]]
=> []
=> ? = 1
001 => [2,1] => [[2,2],[1]]
=> [1]
=> ? = 1
011 => [1,2] => [[2,1],[]]
=> []
=> ? = 3
100 => [1,2] => [[2,1],[]]
=> []
=> ? = 3
110 => [2,1] => [[2,2],[1]]
=> [1]
=> ? = 1
111 => [3] => [[3],[]]
=> []
=> ? = 1
0000 => [4] => [[4],[]]
=> []
=> ? = 1
0001 => [3,1] => [[3,3],[2]]
=> [2]
=> 2
0010 => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 1
0011 => [2,2] => [[3,2],[1]]
=> [1]
=> ? = 2
0100 => [1,1,2] => [[2,1,1],[]]
=> []
=> ? = 4
0110 => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> ? = 2
0111 => [1,3] => [[3,1],[]]
=> []
=> ? = 2
1000 => [1,3] => [[3,1],[]]
=> []
=> ? = 2
1001 => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> ? = 2
1011 => [1,1,2] => [[2,1,1],[]]
=> []
=> ? = 4
1100 => [2,2] => [[3,2],[1]]
=> [1]
=> ? = 2
1101 => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 1
1110 => [3,1] => [[3,3],[2]]
=> [2]
=> 2
1111 => [4] => [[4],[]]
=> []
=> ? = 1
Description
The least common multiple of the parts of the partition.
Matching statistic: St000707
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000707: Integer partitions ⟶ ℤResult quality: 18% ●values known / values provided: 18%●distinct values known / distinct values provided: 50%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000707: Integer partitions ⟶ ℤResult quality: 18% ●values known / values provided: 18%●distinct values known / distinct values provided: 50%
Values
00 => [2] => [[2],[]]
=> []
=> ? = 2
11 => [2] => [[2],[]]
=> []
=> ? = 2
000 => [3] => [[3],[]]
=> []
=> ? = 1
001 => [2,1] => [[2,2],[1]]
=> [1]
=> ? = 1
011 => [1,2] => [[2,1],[]]
=> []
=> ? = 3
100 => [1,2] => [[2,1],[]]
=> []
=> ? = 3
110 => [2,1] => [[2,2],[1]]
=> [1]
=> ? = 1
111 => [3] => [[3],[]]
=> []
=> ? = 1
0000 => [4] => [[4],[]]
=> []
=> ? = 1
0001 => [3,1] => [[3,3],[2]]
=> [2]
=> 2
0010 => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 1
0011 => [2,2] => [[3,2],[1]]
=> [1]
=> ? = 2
0100 => [1,1,2] => [[2,1,1],[]]
=> []
=> ? = 4
0110 => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> ? = 2
0111 => [1,3] => [[3,1],[]]
=> []
=> ? = 2
1000 => [1,3] => [[3,1],[]]
=> []
=> ? = 2
1001 => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> ? = 2
1011 => [1,1,2] => [[2,1,1],[]]
=> []
=> ? = 4
1100 => [2,2] => [[3,2],[1]]
=> [1]
=> ? = 2
1101 => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 1
1110 => [3,1] => [[3,3],[2]]
=> [2]
=> 2
1111 => [4] => [[4],[]]
=> []
=> ? = 1
Description
The product of the factorials of the parts.
Matching statistic: St000708
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000708: Integer partitions ⟶ ℤResult quality: 18% ●values known / values provided: 18%●distinct values known / distinct values provided: 50%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000708: Integer partitions ⟶ ℤResult quality: 18% ●values known / values provided: 18%●distinct values known / distinct values provided: 50%
Values
00 => [2] => [[2],[]]
=> []
=> ? = 2
11 => [2] => [[2],[]]
=> []
=> ? = 2
000 => [3] => [[3],[]]
=> []
=> ? = 1
001 => [2,1] => [[2,2],[1]]
=> [1]
=> ? = 1
011 => [1,2] => [[2,1],[]]
=> []
=> ? = 3
100 => [1,2] => [[2,1],[]]
=> []
=> ? = 3
110 => [2,1] => [[2,2],[1]]
=> [1]
=> ? = 1
111 => [3] => [[3],[]]
=> []
=> ? = 1
0000 => [4] => [[4],[]]
=> []
=> ? = 1
0001 => [3,1] => [[3,3],[2]]
=> [2]
=> 2
0010 => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 1
0011 => [2,2] => [[3,2],[1]]
=> [1]
=> ? = 2
0100 => [1,1,2] => [[2,1,1],[]]
=> []
=> ? = 4
0110 => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> ? = 2
0111 => [1,3] => [[3,1],[]]
=> []
=> ? = 2
1000 => [1,3] => [[3,1],[]]
=> []
=> ? = 2
1001 => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> ? = 2
1011 => [1,1,2] => [[2,1,1],[]]
=> []
=> ? = 4
1100 => [2,2] => [[3,2],[1]]
=> [1]
=> ? = 2
1101 => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 1
1110 => [3,1] => [[3,3],[2]]
=> [2]
=> 2
1111 => [4] => [[4],[]]
=> []
=> ? = 1
Description
The product of the parts of an integer partition.
The following 14 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St000454The largest eigenvalue of a graph if it is integral. St000478Another weight of a partition according to Alladi. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000934The 2-degree of an integer partition. St000928The sum of the coefficients of the character polynomial of an integer partition. St001651The Frankl number of a lattice. St001645The pebbling number of a connected graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!