searching the database
Your data matches 22 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001515
Mp00251: Graphs —clique sizes⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
St001515: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
St001515: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
([],2)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2
([],3)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
([(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2
([(0,2),(1,2)],3)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3
([],4)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 3
([(1,3),(2,3)],4)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 4
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 4
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 4
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 4
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 4
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 4
([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 4
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 4
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 4
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 4
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 4
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 4
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 4
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 4
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 4
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 4
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 4
([(1,2),(3,5),(4,5)],6)
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 4
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 4
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 4
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 4
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 4
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 4
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 4
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 4
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 4
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 4
Description
The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule).
Matching statistic: St000264
(load all 14 compositions to match this statistic)
(load all 14 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([],2)
=> ([],2)
=> ([],2)
=> ? = 2 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ? = 2 - 1
([],3)
=> ([],3)
=> ([],3)
=> ? = 3 - 1
([(1,2)],3)
=> ([(1,2)],3)
=> ([],2)
=> ? = 2 - 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 3 - 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? = 3 - 1
([],4)
=> ([],4)
=> ([],4)
=> ? = 4 - 1
([(2,3)],4)
=> ([(2,3)],4)
=> ([],3)
=> ? = 3 - 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ? = 3 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ? = 4 - 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 4 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 1
([(3,4)],5)
=> ([(3,4)],5)
=> ([],4)
=> ? = 4 - 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ? = 4 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ? = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 4 - 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4 - 1
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ? = 3 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 4 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 3 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 4 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 3 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 3 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 4 - 1
([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ([],4)
=> ? = 4 - 1
([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ? = 4 - 1
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ? = 3 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ? = 4 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ? = 4 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ? = 4 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ? = 4 - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ? = 3 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4 - 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(1,2)],3)
=> ? = 4 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4 - 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ? = 3 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3 - 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3 - 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([],2)
=> ? = 4 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 4 - 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ? = 3 - 1
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 4 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ? = 4 - 1
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> ([],4)
=> ? = 4 - 1
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 4 - 1
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 4 - 1
([(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 4 - 1
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
Matching statistic: St001875
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([],2)
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> ? = 2 - 1
([(0,1)],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> ? = 2 - 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],1)
=> ? = 3 - 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([],2)
=> ([],1)
=> ? = 2 - 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 3 - 1
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> ? = 3 - 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],1)
=> ? = 4 - 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],3)
=> ([],1)
=> ? = 3 - 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 4 - 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],2)
=> ([],1)
=> ? = 3 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ? = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 3 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 4 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> ? = 4 - 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],4)
=> ([],1)
=> ? = 4 - 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 4 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 4 - 1
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 4 - 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? = 3 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 4 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 4 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3 = 4 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],1)
=> ? = 3 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 4 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? = 3 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 3 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 4 - 1
([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ? = 4 - 1
([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 4 - 1
([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ? = 3 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 4 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 4 - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 4 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3 = 4 - 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([],1)
=> ? = 4 - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ? = 3 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 4 - 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 4 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 4 - 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 4 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 4 - 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ? = 3 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 - 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 4 - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 - 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3 = 4 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([],2)
=> ([],1)
=> ? = 4 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ? = 3 - 1
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 4 - 1
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3 = 4 - 1
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
Description
The number of simple modules with projective dimension at most 1.
Matching statistic: St001060
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([],2)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? = 2 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? = 2 - 1
([],3)
=> ([],3)
=> ([],3)
=> ([],1)
=> ? = 3 - 1
([(1,2)],3)
=> ([(1,2)],3)
=> ([],2)
=> ([],1)
=> ? = 2 - 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 3 - 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ? = 3 - 1
([],4)
=> ([],4)
=> ([],4)
=> ([],1)
=> ? = 4 - 1
([(2,3)],4)
=> ([(2,3)],4)
=> ([],3)
=> ([],1)
=> ? = 3 - 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ? = 3 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 4 - 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ? = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 3 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 4 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 4 - 1
([(3,4)],5)
=> ([(3,4)],5)
=> ([],4)
=> ([],1)
=> ? = 4 - 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 4 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ? = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 4 - 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 4 - 1
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? = 3 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 4 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 4 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? = 3 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 4 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? = 3 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 3 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 4 - 1
([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ? = 4 - 1
([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 4 - 1
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ? = 3 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 4 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 4 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 4 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ? = 4 - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ? = 3 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 4 - 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 4 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 4 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 4 - 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ? = 3 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 3 - 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 3 - 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([],2)
=> ([],1)
=> ? = 4 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ?
=> ? = 4 - 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ? = 3 - 1
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 4 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 4 - 1
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
Description
The distinguishing index of a graph.
This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism.
If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Matching statistic: St001570
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1 - 4
([],2)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? = 2 - 4
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? = 2 - 4
([],3)
=> ([],3)
=> ([],3)
=> ([],1)
=> ? = 3 - 4
([(1,2)],3)
=> ([(1,2)],3)
=> ([],2)
=> ([],1)
=> ? = 2 - 4
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 3 - 4
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ? = 3 - 4
([],4)
=> ([],4)
=> ([],4)
=> ([],1)
=> ? = 4 - 4
([(2,3)],4)
=> ([(2,3)],4)
=> ([],3)
=> ([],1)
=> ? = 3 - 4
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 3 - 4
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 4 - 4
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ? = 3 - 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 4 - 4
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ? = 2 - 4
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 3 - 4
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 4 - 4
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 4 - 4
([(3,4)],5)
=> ([(3,4)],5)
=> ([],4)
=> ([],1)
=> ? = 4 - 4
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 4 - 4
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 4 - 4
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ? = 3 - 4
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 4 - 4
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 4 - 4
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? = 3 - 4
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 3 - 4
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 4 - 4
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 4 - 4
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 4 - 4
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 4 - 4
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? = 3 - 4
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 4 - 4
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 4 - 4
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 4 - 4
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? = 3 - 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 3 - 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 4 - 4
([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ? = 4 - 4
([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 4 - 4
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ? = 3 - 4
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 4 - 4
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 4 - 4
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 4 - 4
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 4 - 4
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 4 - 4
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ? = 4 - 4
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ? = 3 - 4
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 4 - 4
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 4 - 4
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 4 - 4
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 4 - 4
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 4 - 4
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 4 - 4
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 4 - 4
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 4 - 4
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ? = 3 - 4
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 3 - 4
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 4 - 4
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 3 - 4
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 4 - 4
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 4 - 4
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 4 - 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([],2)
=> ([],1)
=> ? = 4 - 4
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ?
=> ? = 4 - 4
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ? = 3 - 4
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 4 - 4
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 4 - 4
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 4 - 4
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 4 - 4
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 4 - 4
([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 4 - 4
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 4 - 4
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 4 - 4
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 4 - 4
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 4 - 4
Description
The minimal number of edges to add to make a graph Hamiltonian.
A graph is Hamiltonian if it contains a cycle as a subgraph, which contains all vertices.
Matching statistic: St001630
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1 - 2
([],2)
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> ? = 2 - 2
([(0,1)],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> ? = 2 - 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],1)
=> ? = 3 - 2
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([],2)
=> ([],1)
=> ? = 2 - 2
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 3 - 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> ? = 3 - 2
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],1)
=> ? = 4 - 2
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],3)
=> ([],1)
=> ? = 3 - 2
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 3 - 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],2)
=> ([],1)
=> ? = 3 - 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ? = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 3 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 4 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> ? = 4 - 2
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],4)
=> ([],1)
=> ? = 4 - 2
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 2
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ? = 4 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? = 4 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],1)
=> ? = 3 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 4 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? = 3 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 3 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 4 - 2
([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ? = 4 - 2
([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 2
([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ? = 3 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([],1)
=> ? = 4 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> ([],1)
=> ? = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([],1)
=> ? = 4 - 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ? = 3 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 2
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ? = 4 - 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ? = 3 - 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 3 - 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Matching statistic: St001878
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1 - 2
([],2)
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> ? = 2 - 2
([(0,1)],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> ? = 2 - 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],1)
=> ? = 3 - 2
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([],2)
=> ([],1)
=> ? = 2 - 2
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 3 - 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> ? = 3 - 2
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],1)
=> ? = 4 - 2
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],3)
=> ([],1)
=> ? = 3 - 2
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 3 - 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],2)
=> ([],1)
=> ? = 3 - 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ? = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 3 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 4 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> ? = 4 - 2
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],4)
=> ([],1)
=> ? = 4 - 2
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 2
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ? = 4 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? = 4 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],1)
=> ? = 3 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 4 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? = 3 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 3 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 4 - 2
([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ? = 4 - 2
([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 2
([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ? = 3 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([],1)
=> ? = 4 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> ([],1)
=> ? = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([],1)
=> ? = 4 - 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ? = 3 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 2
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ? = 4 - 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ? = 3 - 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 3 - 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Matching statistic: St001876
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1 - 3
([],2)
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> ? = 2 - 3
([(0,1)],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> ? = 2 - 3
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],1)
=> ? = 3 - 3
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([],2)
=> ([],1)
=> ? = 2 - 3
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 3 - 3
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> ? = 3 - 3
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],1)
=> ? = 4 - 3
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],3)
=> ([],1)
=> ? = 3 - 3
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 3 - 3
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 3
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],2)
=> ([],1)
=> ? = 3 - 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ? = 2 - 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 3 - 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 4 - 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> ? = 4 - 3
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],4)
=> ([],1)
=> ? = 4 - 3
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 3
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 3
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? = 3 - 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 3
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? = 3 - 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 3 - 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ? = 4 - 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? = 4 - 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],1)
=> ? = 3 - 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 4 - 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? = 3 - 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 3 - 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 4 - 3
([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ? = 4 - 3
([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 3
([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ? = 3 - 3
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([],1)
=> ? = 4 - 3
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> ([],1)
=> ? = 4 - 3
([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([],1)
=> ? = 4 - 3
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ? = 3 - 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 3
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 3
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ? = 4 - 3
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ? = 3 - 3
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 3 - 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
Description
The number of 2-regular simple modules in the incidence algebra of the lattice.
Matching statistic: St001877
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1 - 3
([],2)
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> ? = 2 - 3
([(0,1)],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> ? = 2 - 3
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],1)
=> ? = 3 - 3
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([],2)
=> ([],1)
=> ? = 2 - 3
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 3 - 3
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> ? = 3 - 3
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],1)
=> ? = 4 - 3
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],3)
=> ([],1)
=> ? = 3 - 3
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 3 - 3
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 3
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],2)
=> ([],1)
=> ? = 3 - 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ? = 2 - 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 3 - 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 4 - 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> ? = 4 - 3
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],4)
=> ([],1)
=> ? = 4 - 3
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 3
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 3
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? = 3 - 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 3
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? = 3 - 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 3 - 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ? = 4 - 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? = 4 - 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],1)
=> ? = 3 - 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 4 - 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? = 3 - 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 3 - 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 4 - 3
([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ? = 4 - 3
([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 3
([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ? = 3 - 3
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([],1)
=> ? = 4 - 3
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> ([],1)
=> ? = 4 - 3
([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([],1)
=> ? = 4 - 3
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ? = 3 - 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 3
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 3
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ? = 4 - 3
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ? = 3 - 3
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 3 - 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 4 - 3
Description
Number of indecomposable injective modules with projective dimension 2.
Matching statistic: St001651
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1 - 4
([],2)
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> ? = 2 - 4
([(0,1)],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> ? = 2 - 4
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],1)
=> ? = 3 - 4
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([],2)
=> ([],1)
=> ? = 2 - 4
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 3 - 4
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> ? = 3 - 4
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],1)
=> ? = 4 - 4
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],3)
=> ([],1)
=> ? = 3 - 4
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 3 - 4
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 4
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],2)
=> ([],1)
=> ? = 3 - 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 4 - 4
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ? = 2 - 4
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 3 - 4
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 4 - 4
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> ? = 4 - 4
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],4)
=> ([],1)
=> ? = 4 - 4
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 4
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 4
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? = 3 - 4
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 4 - 4
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 4
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? = 3 - 4
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 3 - 4
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 4
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 4
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ? = 4 - 4
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? = 4 - 4
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],1)
=> ? = 3 - 4
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 4 - 4
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 4 - 4
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 4 - 4
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? = 3 - 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 3 - 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? = 4 - 4
([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ? = 4 - 4
([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 4
([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ? = 3 - 4
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 4
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 4
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? = 4 - 4
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([],1)
=> ? = 4 - 4
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> ([],1)
=> ? = 4 - 4
([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([],1)
=> ? = 4 - 4
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ? = 3 - 4
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 4 - 4
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 4
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 4
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 4
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 4 - 4
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 4
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 4 - 4
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ? = 4 - 4
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ? = 3 - 4
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? = 3 - 4
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 4 - 4
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 4 - 4
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 4 - 4
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 4 - 4
([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 4 - 4
([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 4 - 4
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 4 - 4
Description
The Frankl number of a lattice.
For a lattice $L$ on at least two elements, this is
$$
\max_x(|L|-2|[x, 1]|),
$$
where we maximize over all join irreducible elements and $[x, 1]$ denotes the interval from $x$ to the top element. Frankl's conjecture asserts that this number is non-negative, and zero if and only if $L$ is a Boolean lattice.
The following 12 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000284The Plancherel distribution on integer partitions. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000901The cube of the number of standard Young tableaux with shape given by the partition. St001128The exponens consonantiae of a partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!