searching the database
Your data matches 122 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001604
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001604: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001604: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [2,2,1]
=> [2,1]
=> 0
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [2,1,1,1]
=> [1,1,1]
=> 0
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [2,2,1]
=> [2,1]
=> 0
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [2,2,1]
=> [2,1]
=> 0
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[.,[.,[.,[[.,.],[.,.]]]]]
=> [4,6,5,3,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[.,[.,[[.,.],[.,[.,.]]]]]
=> [3,6,5,4,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[.,[.,[[.,.],[[.,.],.]]]]
=> [3,5,6,4,2,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[.,[.,[[.,[.,.]],[.,.]]]]
=> [4,3,6,5,2,1] => [2,2,1,1]
=> [2,1,1]
=> 0
[.,[.,[[[.,.],.],[.,.]]]]
=> [3,4,6,5,2,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[.,[.,[[.,[.,[.,.]]],.]]]
=> [5,4,3,6,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[.,[.,[[.,[[.,.],.]],.]]]
=> [4,5,3,6,2,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[.,[.,[[[.,.],[.,.]],.]]]
=> [3,5,4,6,2,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[.,[.,[[[.,[.,.]],.],.]]]
=> [4,3,5,6,2,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[.,[[.,.],[.,[.,[.,.]]]]]
=> [2,6,5,4,3,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[.,[[.,.],[.,[[.,.],.]]]]
=> [2,5,6,4,3,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[.,[[.,.],[[.,.],[.,.]]]]
=> [2,4,6,5,3,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[.,[[.,.],[[.,[.,.]],.]]]
=> [2,5,4,6,3,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[.,[[.,[.,.]],[.,[.,.]]]]
=> [3,2,6,5,4,1] => [2,2,1,1]
=> [2,1,1]
=> 0
[.,[[.,[.,.]],[[.,.],.]]]
=> [3,2,5,6,4,1] => [3,2,1]
=> [2,1]
=> 0
[.,[[[.,.],.],[.,[.,.]]]]
=> [2,3,6,5,4,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[.,[[.,[.,[.,.]]],[.,.]]]
=> [4,3,2,6,5,1] => [2,2,1,1]
=> [2,1,1]
=> 0
[.,[[.,[[.,.],.]],[.,.]]]
=> [3,4,2,6,5,1] => [3,2,1]
=> [2,1]
=> 0
[.,[[[.,.],[.,.]],[.,.]]]
=> [2,4,3,6,5,1] => [3,2,1]
=> [2,1]
=> 0
[.,[[[.,[.,.]],.],[.,.]]]
=> [3,2,4,6,5,1] => [3,2,1]
=> [2,1]
=> 0
[.,[[.,[.,[.,[.,.]]]],.]]
=> [5,4,3,2,6,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[.,[[.,[.,[[.,.],.]]],.]]
=> [4,5,3,2,6,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[.,[[.,[[.,.],[.,.]]],.]]
=> [3,5,4,2,6,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[.,[[.,[[.,[.,.]],.]],.]]
=> [4,3,5,2,6,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[.,[[[.,.],[.,[.,.]]],.]]
=> [2,5,4,3,6,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[.,[[[.,[.,.]],[.,.]],.]]
=> [3,2,5,4,6,1] => [3,2,1]
=> [2,1]
=> 0
[.,[[[.,[.,[.,.]]],.],.]]
=> [4,3,2,5,6,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[[.,.],[.,[.,[.,[.,.]]]]]
=> [1,6,5,4,3,2] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[[.,.],[.,[.,[[.,.],.]]]]
=> [1,5,6,4,3,2] => [3,1,1,1]
=> [1,1,1]
=> 0
[[.,.],[.,[[.,.],[.,.]]]]
=> [1,4,6,5,3,2] => [3,1,1,1]
=> [1,1,1]
=> 0
[[.,.],[.,[[.,[.,.]],.]]]
=> [1,5,4,6,3,2] => [3,1,1,1]
=> [1,1,1]
=> 0
[[.,.],[[.,.],[.,[.,.]]]]
=> [1,3,6,5,4,2] => [3,1,1,1]
=> [1,1,1]
=> 0
[[.,.],[[.,[.,.]],[.,.]]]
=> [1,4,3,6,5,2] => [3,2,1]
=> [2,1]
=> 0
[[.,.],[[.,[.,[.,.]]],.]]
=> [1,5,4,3,6,2] => [3,1,1,1]
=> [1,1,1]
=> 0
Description
The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons.
Equivalently, this is the multiplicity of the irreducible representation corresponding to a partition in the cycle index of the dihedral group.
This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Matching statistic: St000479
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000479: Graphs ⟶ ℤResult quality: 18% ●values known / values provided: 18%●distinct values known / distinct values provided: 25%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000479: Graphs ⟶ ℤResult quality: 18% ●values known / values provided: 18%●distinct values known / distinct values provided: 25%
Values
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 18 = 0 + 18
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 18
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 18 = 0 + 18
[.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 18 = 0 + 18
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 18 = 0 + 18
[.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 18 = 0 + 18
[[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 18
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 18
[.,[.,[.,[[.,.],[.,.]]]]]
=> [6,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 18
[.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 18
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 18 = 0 + 18
[.,[.,[[.,.],[.,[.,.]]]]]
=> [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 18
[.,[.,[[.,.],[[.,.],.]]]]
=> [5,6,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 18 = 0 + 18
[.,[.,[[.,[.,.]],[.,.]]]]
=> [6,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 18
[.,[.,[[[.,.],.],[.,.]]]]
=> [6,3,4,5,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 18 = 0 + 18
[.,[.,[[.,[.,[.,.]]],.]]]
=> [5,4,3,6,2,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 18
[.,[.,[[.,[[.,.],.]],.]]]
=> [4,5,3,6,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[.,[.,[[[.,.],[.,.]],.]]]
=> [5,3,4,6,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[.,[.,[[[.,[.,.]],.],.]]]
=> [4,3,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[.,[[.,.],[.,[.,[.,.]]]]]
=> [6,5,4,2,3,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 18
[.,[[.,.],[.,[[.,.],.]]]]
=> [5,6,4,2,3,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 18 = 0 + 18
[.,[[.,.],[[.,.],[.,.]]]]
=> [6,4,5,2,3,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 18 = 0 + 18
[.,[[.,.],[[.,[.,.]],.]]]
=> [5,4,6,2,3,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[.,[[.,[.,.]],[.,[.,.]]]]
=> [6,5,3,2,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 18
[.,[[.,[.,.]],[[.,.],.]]]
=> [5,6,3,2,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[.,[[[.,.],.],[.,[.,.]]]]
=> [6,5,2,3,4,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 18 = 0 + 18
[.,[[.,[.,[.,.]]],[.,.]]]
=> [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 18
[.,[[.,[[.,.],.]],[.,.]]]
=> [6,3,4,2,5,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[.,[[[.,.],[.,.]],[.,.]]]
=> [6,4,2,3,5,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[.,[[[.,[.,.]],.],[.,.]]]
=> [6,3,2,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[.,[[.,[.,[.,[.,.]]]],.]]
=> [5,4,3,2,6,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 18
[.,[[.,[.,[[.,.],.]]],.]]
=> [4,5,3,2,6,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[.,[[.,[[.,.],[.,.]]],.]]
=> [5,3,4,2,6,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[.,[[.,[[.,[.,.]],.]],.]]
=> [4,3,5,2,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 18
[.,[[[.,.],[.,[.,.]]],.]]
=> [5,4,2,3,6,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[.,[[[.,[.,.]],[.,.]],.]]
=> [5,3,2,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 18
[.,[[[.,[.,[.,.]]],.],.]]
=> [4,3,2,5,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[[.,.],[.,[.,[.,[.,.]]]]]
=> [6,5,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 18
[[.,.],[.,[.,[[.,.],.]]]]
=> [5,6,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 18 = 0 + 18
[[.,.],[.,[[.,.],[.,.]]]]
=> [6,4,5,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 18 = 0 + 18
[[.,.],[.,[[.,[.,.]],.]]]
=> [5,4,6,3,1,2] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[[.,.],[[.,.],[.,[.,.]]]]
=> [6,5,3,4,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 18 = 0 + 18
[[.,.],[[.,[.,.]],[.,.]]]
=> [6,4,3,5,1,2] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[[.,.],[[.,[.,[.,.]]],.]]
=> [5,4,3,6,1,2] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[[.,[.,.]],[.,[.,[.,.]]]]
=> [6,5,4,2,1,3] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 18
[[.,[.,.]],[.,[[.,.],.]]]
=> [5,6,4,2,1,3] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[[.,[.,.]],[[.,.],[.,.]]]
=> [6,4,5,2,1,3] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[[.,[.,.]],[[.,[.,.]],.]]
=> [5,4,6,2,1,3] => ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 18
[[[.,.],.],[.,[.,[.,.]]]]
=> [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 18 = 0 + 18
[[.,[.,[.,.]]],[.,[.,.]]]
=> [6,5,3,2,1,4] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 18
[[.,[.,[.,.]]],[[.,.],.]]
=> [5,6,3,2,1,4] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[[.,[[.,.],.]],[.,[.,.]]]
=> [6,5,2,3,1,4] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[[[.,.],[.,.]],[.,[.,.]]]
=> [6,5,3,1,2,4] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[[[.,[.,.]],.],[.,[.,.]]]
=> [6,5,2,1,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[[.,[.,[.,[.,.]]]],[.,.]]
=> [6,4,3,2,1,5] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 18
[[.,[.,[[.,.],.]]],[.,.]]
=> [6,3,4,2,1,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[[.,[[.,.],[.,.]]],[.,.]]
=> [6,4,2,3,1,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[[.,[[.,[.,.]],.]],[.,.]]
=> [6,3,2,4,1,5] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 18
[[[.,.],[.,[.,.]]],[.,.]]
=> [6,4,3,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[[[.,[.,.]],[.,.]],[.,.]]
=> [6,4,2,1,3,5] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 18
[[[.,[.,[.,.]]],.],[.,.]]
=> [6,3,2,1,4,5] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[[.,[.,[.,[.,[.,.]]]]],.]
=> [5,4,3,2,1,6] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 18
[[.,[.,[.,[[.,.],.]]]],.]
=> [4,5,3,2,1,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[[.,[.,[[.,.],[.,.]]]],.]
=> [5,3,4,2,1,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[[.,[.,[[.,[.,.]],.]]],.]
=> [4,3,5,2,1,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 18 = 0 + 18
[[.,[[.,.],[.,[.,.]]]],.]
=> [5,4,2,3,1,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18 = 0 + 18
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 18
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 18
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [7,5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 18
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 18
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [5,6,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 18
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [7,6,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 18
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [6,7,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 18
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [7,5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 18
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [7,4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 18
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 18
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [5,6,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 18
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [6,4,5,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 18
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [5,4,6,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 18
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [7,6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 18
[.,[.,[[.,.],[.,[[.,.],.]]]]]
=> [6,7,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 18
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [7,5,6,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 18
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [6,5,7,3,4,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 18
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [7,6,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 18
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [6,7,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 18
[.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [7,6,3,4,5,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 18
[.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [7,5,4,3,6,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 18
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [7,4,5,3,6,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 18
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [7,5,3,4,6,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 18
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [7,4,3,5,6,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 18
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [6,5,4,3,7,2,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 18
[.,[.,[[.,[.,[[.,.],.]]],.]]]
=> [5,6,4,3,7,2,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 18
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [6,4,5,3,7,2,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 18
[.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [5,4,6,3,7,2,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 18
Description
The Ramsey number of a graph.
This is the smallest integer $n$ such that every two-colouring of the edges of the complete graph $K_n$ contains a (not necessarily induced) monochromatic copy of the given graph. [1]
Thus, the Ramsey number of the complete graph $K_n$ is the ordinary Ramsey number $R(n,n)$. Very few of these numbers are known, in particular, it is only known that $43\leq R(5,5)\leq 48$. [2,3,4,5]
Matching statistic: St000510
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000510: Integer partitions ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 25%
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000510: Integer partitions ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 25%
Values
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 0
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> 0
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> 0
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 0
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> 0
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> 0
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> 0
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 0
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> 0
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> 0
[[.,[.,[.,[.,.]]]],.]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> 0
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> ? = 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1]
=> 0
[.,[.,[.,[[.,.],[.,.]]]]]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1]
=> 0
[.,[.,[.,[[.,[.,.]],.]]]]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,1]
=> 0
[.,[.,[.,[[[.,.],.],.]]]]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,2,1]
=> 0
[.,[.,[[.,.],[.,[.,.]]]]]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1]
=> 0
[.,[.,[[.,.],[[.,.],.]]]]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [4,2,1]
=> 0
[.,[.,[[.,[.,.]],[.,.]]]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,1]
=> 0
[.,[.,[[[.,.],.],[.,.]]]]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [5,2,1]
=> 0
[.,[.,[[.,[.,[.,.]]],.]]]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> 0
[.,[.,[[.,[[.,.],.]],.]]]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1]
=> 0
[.,[.,[[[.,.],[.,.]],.]]]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1]
=> 0
[.,[.,[[[.,[.,.]],.],.]]]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1,1]
=> 0
[.,[[.,.],[.,[.,[.,.]]]]]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1]
=> ? = 0
[.,[[.,.],[.,[[.,.],.]]]]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,3,1]
=> 0
[.,[[.,.],[[.,.],[.,.]]]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [5,3,1]
=> 0
[.,[[.,.],[[.,[.,.]],.]]]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [4,3,1,1]
=> 0
[.,[[.,[.,.]],[.,[.,.]]]]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,1]
=> ? = 0
[.,[[.,[.,.]],[[.,.],.]]]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1,1]
=> 0
[.,[[[.,.],.],[.,[.,.]]]]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [5,4,1]
=> 0
[.,[[.,[.,[.,.]]],[.,.]]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> ? = 0
[.,[[.,[[.,.],.]],[.,.]]]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [5,2,1,1]
=> 0
[.,[[[.,.],[.,.]],[.,.]]]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [5,3,1,1]
=> 0
[.,[[[.,[.,.]],.],[.,.]]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,1,1]
=> 0
[.,[[.,[.,[.,[.,.]]]],.]]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> ? = 0
[.,[[.,[.,[[.,.],.]]],.]]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1]
=> 0
[.,[[.,[[.,.],[.,.]]],.]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1]
=> 0
[.,[[.,[[.,[.,.]],.]],.]]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1,1]
=> 0
[.,[[[.,.],[.,[.,.]]],.]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1]
=> 0
[.,[[[.,[.,.]],[.,.]],.]]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1,1]
=> 0
[.,[[[.,[.,[.,.]]],.],.]]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2,1]
=> 0
[[.,.],[.,[.,[.,[.,.]]]]]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2]
=> ? = 0
[[.,.],[.,[.,[[.,.],.]]]]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [4,3,2]
=> 0
[[.,.],[.,[[.,.],[.,.]]]]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [5,3,2]
=> 0
[[.,.],[.,[[.,[.,.]],.]]]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2]
=> 0
[[.,.],[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [5,4,2]
=> 0
[[.,.],[[.,[.,.]],[.,.]]]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2]
=> 0
[[.,.],[[.,[.,[.,.]]],.]]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2]
=> 0
[[.,[.,.]],[.,[.,[.,.]]]]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> ? = 0
[[.,[.,.]],[.,[[.,.],.]]]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,1,1]
=> 0
[[.,[.,.]],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,1,1]
=> 0
[[.,[.,.]],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1,1]
=> 0
[[[.,.],.],[.,[.,[.,.]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [5,4,3]
=> 0
[[.,[.,[.,.]]],[.,[.,.]]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> ? = 1
[[.,[.,[.,.]]],[[.,.],.]]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,2,2,2,1]
=> 0
[[.,[[.,.],.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [5,4,1,1]
=> 0
[[[.,.],[.,.]],[.,[.,.]]]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2]
=> ? = 0
[[.,[.,[.,[.,.]]]],[.,.]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> ? = 0
[[[.,.],[.,[.,.]]],[.,.]]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2]
=> ? = 0
[[[.,[.,.]],[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> ? = 1
[[.,[.,[.,[.,[.,.]]]]],.]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> ? = 0
[[[.,.],[.,[.,[.,.]]]],.]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2]
=> ? = 0
[[[.,[.,.]],[.,[.,.]]],.]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> ? = 0
[[[.,[.,[.,.]]],[.,.]],.]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> ? = 0
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1]
=> ? = 0
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1]
=> ? = 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,1]
=> ? = 1
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,1]
=> ? = 1
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1]
=> ? = 1
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,1,1]
=> ? = 0
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,2,1]
=> ? = 1
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1]
=> ? = 1
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [6,4,2,1]
=> ? = 0
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,1]
=> ? = 0
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1,1]
=> ? = 0
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,3,2,1,1,1]
=> ? = 0
[.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [6,5,2,1]
=> ? = 0
[.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,2,1]
=> ? = 0
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [6,3,2,1,1]
=> ? = 0
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [6,4,2,1,1]
=> ? = 0
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [6,3,2,1,1,1]
=> ? = 0
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,2,1]
=> ? = 1
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [5,3,2,2,1]
=> ? = 0
[.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [4,3,2,2,1,1]
=> ? = 0
[.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,2,1]
=> ? = 0
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [5,3,2,2,1,1]
=> ? = 0
[.,[.,[[[.,[.,[.,.]]],.],.]]]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,2,2,1]
=> ? = 0
[.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1]
=> ? = 1
[.,[[.,.],[.,[.,[[.,.],.]]]]]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1]
=> ? = 0
[.,[[.,.],[.,[[.,.],[.,.]]]]]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> [6,4,3,1]
=> ? = 0
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1,1]
=> ? = 0
[.,[[.,.],[[.,.],[.,[.,.]]]]]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> [6,5,3,1]
=> ? = 0
[.,[[.,.],[[.,[.,.]],[.,.]]]]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> [6,4,3,1,1]
=> ? = 0
[.,[[.,.],[[.,[.,[.,.]]],.]]]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,1]
=> ? = 0
[.,[[.,[.,.]],[.,[.,[.,.]]]]]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,1]
=> ? = 0
[.,[[.,[.,.]],[.,[[.,.],.]]]]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,1,1]
=> ? = 0
[.,[[.,[.,.]],[[.,.],[.,.]]]]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [6,4,2,1,1,1]
=> ? = 0
[.,[[.,[.,.]],[[.,[.,.]],.]]]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,2,1,1]
=> ? = 0
Description
The number of invariant oriented cycles when acting with a permutation of given cycle type.
Matching statistic: St000713
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000713: Integer partitions ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 25%
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000713: Integer partitions ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 25%
Values
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 0
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> 0
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> 0
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 0
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> 0
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> 0
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> 0
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 0
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> 0
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> 0
[[.,[.,[.,[.,.]]]],.]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> 0
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> ? = 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1]
=> 0
[.,[.,[.,[[.,.],[.,.]]]]]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1]
=> 0
[.,[.,[.,[[.,[.,.]],.]]]]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,1]
=> 0
[.,[.,[.,[[[.,.],.],.]]]]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,2,1]
=> 0
[.,[.,[[.,.],[.,[.,.]]]]]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1]
=> 0
[.,[.,[[.,.],[[.,.],.]]]]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [4,2,1]
=> 0
[.,[.,[[.,[.,.]],[.,.]]]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,1]
=> 0
[.,[.,[[[.,.],.],[.,.]]]]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [5,2,1]
=> 0
[.,[.,[[.,[.,[.,.]]],.]]]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> 0
[.,[.,[[.,[[.,.],.]],.]]]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1]
=> 0
[.,[.,[[[.,.],[.,.]],.]]]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1]
=> 0
[.,[.,[[[.,[.,.]],.],.]]]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1,1]
=> 0
[.,[[.,.],[.,[.,[.,.]]]]]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1]
=> ? = 0
[.,[[.,.],[.,[[.,.],.]]]]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,3,1]
=> 0
[.,[[.,.],[[.,.],[.,.]]]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [5,3,1]
=> 0
[.,[[.,.],[[.,[.,.]],.]]]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [4,3,1,1]
=> 0
[.,[[.,[.,.]],[.,[.,.]]]]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,1]
=> ? = 0
[.,[[.,[.,.]],[[.,.],.]]]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1,1]
=> 0
[.,[[[.,.],.],[.,[.,.]]]]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [5,4,1]
=> 0
[.,[[.,[.,[.,.]]],[.,.]]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> ? = 0
[.,[[.,[[.,.],.]],[.,.]]]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [5,2,1,1]
=> 0
[.,[[[.,.],[.,.]],[.,.]]]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [5,3,1,1]
=> 0
[.,[[[.,[.,.]],.],[.,.]]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,1,1]
=> 0
[.,[[.,[.,[.,[.,.]]]],.]]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> ? = 0
[.,[[.,[.,[[.,.],.]]],.]]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1]
=> 0
[.,[[.,[[.,.],[.,.]]],.]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1]
=> 0
[.,[[.,[[.,[.,.]],.]],.]]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1,1]
=> 0
[.,[[[.,.],[.,[.,.]]],.]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1]
=> 0
[.,[[[.,[.,.]],[.,.]],.]]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1,1]
=> 0
[.,[[[.,[.,[.,.]]],.],.]]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2,1]
=> 0
[[.,.],[.,[.,[.,[.,.]]]]]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2]
=> ? = 0
[[.,.],[.,[.,[[.,.],.]]]]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [4,3,2]
=> 0
[[.,.],[.,[[.,.],[.,.]]]]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [5,3,2]
=> 0
[[.,.],[.,[[.,[.,.]],.]]]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2]
=> 0
[[.,.],[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [5,4,2]
=> 0
[[.,.],[[.,[.,.]],[.,.]]]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2]
=> 0
[[.,.],[[.,[.,[.,.]]],.]]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2]
=> 0
[[.,[.,.]],[.,[.,[.,.]]]]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> ? = 0
[[.,[.,.]],[.,[[.,.],.]]]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,1,1]
=> 0
[[.,[.,.]],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,1,1]
=> 0
[[.,[.,.]],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1,1]
=> 0
[[[.,.],.],[.,[.,[.,.]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [5,4,3]
=> 0
[[.,[.,[.,.]]],[.,[.,.]]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> ? = 1
[[.,[.,[.,.]]],[[.,.],.]]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,2,2,2,1]
=> 0
[[.,[[.,.],.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [5,4,1,1]
=> 0
[[[.,.],[.,.]],[.,[.,.]]]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2]
=> ? = 0
[[.,[.,[.,[.,.]]]],[.,.]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> ? = 0
[[[.,.],[.,[.,.]]],[.,.]]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2]
=> ? = 0
[[[.,[.,.]],[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> ? = 1
[[.,[.,[.,[.,[.,.]]]]],.]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> ? = 0
[[[.,.],[.,[.,[.,.]]]],.]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2]
=> ? = 0
[[[.,[.,.]],[.,[.,.]]],.]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> ? = 0
[[[.,[.,[.,.]]],[.,.]],.]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> ? = 0
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1]
=> ? = 0
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1]
=> ? = 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,1]
=> ? = 1
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,1]
=> ? = 1
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1]
=> ? = 1
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,1,1]
=> ? = 0
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,2,1]
=> ? = 1
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1]
=> ? = 1
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [6,4,2,1]
=> ? = 0
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,1]
=> ? = 0
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1,1]
=> ? = 0
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,3,2,1,1,1]
=> ? = 0
[.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [6,5,2,1]
=> ? = 0
[.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,2,1]
=> ? = 0
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [6,3,2,1,1]
=> ? = 0
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [6,4,2,1,1]
=> ? = 0
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [6,3,2,1,1,1]
=> ? = 0
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,2,1]
=> ? = 1
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [5,3,2,2,1]
=> ? = 0
[.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [4,3,2,2,1,1]
=> ? = 0
[.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,2,1]
=> ? = 0
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [5,3,2,2,1,1]
=> ? = 0
[.,[.,[[[.,[.,[.,.]]],.],.]]]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,2,2,1]
=> ? = 0
[.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1]
=> ? = 1
[.,[[.,.],[.,[.,[[.,.],.]]]]]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1]
=> ? = 0
[.,[[.,.],[.,[[.,.],[.,.]]]]]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> [6,4,3,1]
=> ? = 0
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1,1]
=> ? = 0
[.,[[.,.],[[.,.],[.,[.,.]]]]]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> [6,5,3,1]
=> ? = 0
[.,[[.,.],[[.,[.,.]],[.,.]]]]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> [6,4,3,1,1]
=> ? = 0
[.,[[.,.],[[.,[.,[.,.]]],.]]]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,1]
=> ? = 0
[.,[[.,[.,.]],[.,[.,[.,.]]]]]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,1]
=> ? = 0
[.,[[.,[.,.]],[.,[[.,.],.]]]]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,1,1]
=> ? = 0
[.,[[.,[.,.]],[[.,.],[.,.]]]]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [6,4,2,1,1,1]
=> ? = 0
[.,[[.,[.,.]],[[.,[.,.]],.]]]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,2,1,1]
=> ? = 0
Description
The dimension of the irreducible representation of Sp(4) labelled by an integer partition.
Consider the symplectic group $Sp(2n)$. Then the integer partition $(\mu_1,\dots,\mu_k)$ of length at most $n$ corresponds to the weight vector $(\mu_1-\mu_2,\dots,\mu_{k-2}-\mu_{k-1},\mu_n,0,\dots,0)$.
For example, the integer partition $(2)$ labels the symmetric square of the vector representation, whereas the integer partition $(1,1)$ labels the second fundamental representation.
Matching statistic: St000714
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000714: Integer partitions ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 25%
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000714: Integer partitions ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 25%
Values
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 0
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> 0
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> 0
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 0
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> 0
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> 0
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> 0
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 0
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> 0
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> 0
[[.,[.,[.,[.,.]]]],.]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> 0
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> ? = 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1]
=> 0
[.,[.,[.,[[.,.],[.,.]]]]]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1]
=> 0
[.,[.,[.,[[.,[.,.]],.]]]]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,1]
=> 0
[.,[.,[.,[[[.,.],.],.]]]]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,2,1]
=> 0
[.,[.,[[.,.],[.,[.,.]]]]]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1]
=> 0
[.,[.,[[.,.],[[.,.],.]]]]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [4,2,1]
=> 0
[.,[.,[[.,[.,.]],[.,.]]]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,1]
=> 0
[.,[.,[[[.,.],.],[.,.]]]]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [5,2,1]
=> 0
[.,[.,[[.,[.,[.,.]]],.]]]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> 0
[.,[.,[[.,[[.,.],.]],.]]]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1]
=> 0
[.,[.,[[[.,.],[.,.]],.]]]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1]
=> 0
[.,[.,[[[.,[.,.]],.],.]]]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1,1]
=> 0
[.,[[.,.],[.,[.,[.,.]]]]]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1]
=> ? = 0
[.,[[.,.],[.,[[.,.],.]]]]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,3,1]
=> 0
[.,[[.,.],[[.,.],[.,.]]]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [5,3,1]
=> 0
[.,[[.,.],[[.,[.,.]],.]]]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [4,3,1,1]
=> 0
[.,[[.,[.,.]],[.,[.,.]]]]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,1]
=> ? = 0
[.,[[.,[.,.]],[[.,.],.]]]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1,1]
=> 0
[.,[[[.,.],.],[.,[.,.]]]]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [5,4,1]
=> 0
[.,[[.,[.,[.,.]]],[.,.]]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> ? = 0
[.,[[.,[[.,.],.]],[.,.]]]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [5,2,1,1]
=> 0
[.,[[[.,.],[.,.]],[.,.]]]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [5,3,1,1]
=> 0
[.,[[[.,[.,.]],.],[.,.]]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,1,1]
=> 0
[.,[[.,[.,[.,[.,.]]]],.]]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> ? = 0
[.,[[.,[.,[[.,.],.]]],.]]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1]
=> 0
[.,[[.,[[.,.],[.,.]]],.]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1]
=> 0
[.,[[.,[[.,[.,.]],.]],.]]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1,1]
=> 0
[.,[[[.,.],[.,[.,.]]],.]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1]
=> 0
[.,[[[.,[.,.]],[.,.]],.]]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1,1]
=> 0
[.,[[[.,[.,[.,.]]],.],.]]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2,1]
=> 0
[[.,.],[.,[.,[.,[.,.]]]]]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2]
=> ? = 0
[[.,.],[.,[.,[[.,.],.]]]]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [4,3,2]
=> 0
[[.,.],[.,[[.,.],[.,.]]]]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [5,3,2]
=> 0
[[.,.],[.,[[.,[.,.]],.]]]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2]
=> 0
[[.,.],[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [5,4,2]
=> 0
[[.,.],[[.,[.,.]],[.,.]]]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2]
=> 0
[[.,.],[[.,[.,[.,.]]],.]]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2]
=> 0
[[.,[.,.]],[.,[.,[.,.]]]]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> ? = 0
[[.,[.,.]],[.,[[.,.],.]]]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,1,1]
=> 0
[[.,[.,.]],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,1,1]
=> 0
[[.,[.,.]],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1,1]
=> 0
[[[.,.],.],[.,[.,[.,.]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [5,4,3]
=> 0
[[.,[.,[.,.]]],[.,[.,.]]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> ? = 1
[[.,[.,[.,.]]],[[.,.],.]]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,2,2,2,1]
=> 0
[[.,[[.,.],.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [5,4,1,1]
=> 0
[[[.,.],[.,.]],[.,[.,.]]]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2]
=> ? = 0
[[.,[.,[.,[.,.]]]],[.,.]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> ? = 0
[[[.,.],[.,[.,.]]],[.,.]]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2]
=> ? = 0
[[[.,[.,.]],[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> ? = 1
[[.,[.,[.,[.,[.,.]]]]],.]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> ? = 0
[[[.,.],[.,[.,[.,.]]]],.]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2]
=> ? = 0
[[[.,[.,.]],[.,[.,.]]],.]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> ? = 0
[[[.,[.,[.,.]]],[.,.]],.]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> ? = 0
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1]
=> ? = 0
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1]
=> ? = 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,1]
=> ? = 1
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,1]
=> ? = 1
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1]
=> ? = 1
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,1,1]
=> ? = 0
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,2,1]
=> ? = 1
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1]
=> ? = 1
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [6,4,2,1]
=> ? = 0
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,1]
=> ? = 0
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1,1]
=> ? = 0
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,3,2,1,1,1]
=> ? = 0
[.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [6,5,2,1]
=> ? = 0
[.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,2,1]
=> ? = 0
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [6,3,2,1,1]
=> ? = 0
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [6,4,2,1,1]
=> ? = 0
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [6,3,2,1,1,1]
=> ? = 0
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,2,1]
=> ? = 1
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [5,3,2,2,1]
=> ? = 0
[.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [4,3,2,2,1,1]
=> ? = 0
[.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,2,1]
=> ? = 0
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [5,3,2,2,1,1]
=> ? = 0
[.,[.,[[[.,[.,[.,.]]],.],.]]]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,2,2,1]
=> ? = 0
[.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1]
=> ? = 1
[.,[[.,.],[.,[.,[[.,.],.]]]]]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1]
=> ? = 0
[.,[[.,.],[.,[[.,.],[.,.]]]]]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> [6,4,3,1]
=> ? = 0
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1,1]
=> ? = 0
[.,[[.,.],[[.,.],[.,[.,.]]]]]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> [6,5,3,1]
=> ? = 0
[.,[[.,.],[[.,[.,.]],[.,.]]]]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> [6,4,3,1,1]
=> ? = 0
[.,[[.,.],[[.,[.,[.,.]]],.]]]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,1]
=> ? = 0
[.,[[.,[.,.]],[.,[.,[.,.]]]]]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,1]
=> ? = 0
[.,[[.,[.,.]],[.,[[.,.],.]]]]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,1,1]
=> ? = 0
[.,[[.,[.,.]],[[.,.],[.,.]]]]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [6,4,2,1,1,1]
=> ? = 0
[.,[[.,[.,.]],[[.,[.,.]],.]]]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,2,1,1]
=> ? = 0
Description
The number of semistandard Young tableau of given shape, with entries at most 2.
This is also the dimension of the corresponding irreducible representation of $GL_2$.
Matching statistic: St000929
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000929: Integer partitions ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 25%
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000929: Integer partitions ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 25%
Values
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 0
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> 0
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> 0
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 0
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> 0
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> 0
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> 0
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 0
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> 0
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> 0
[[.,[.,[.,[.,.]]]],.]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> 0
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> ? = 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1]
=> 0
[.,[.,[.,[[.,.],[.,.]]]]]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1]
=> 0
[.,[.,[.,[[.,[.,.]],.]]]]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,1]
=> 0
[.,[.,[.,[[[.,.],.],.]]]]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,2,1]
=> 0
[.,[.,[[.,.],[.,[.,.]]]]]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1]
=> 0
[.,[.,[[.,.],[[.,.],.]]]]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [4,2,1]
=> 0
[.,[.,[[.,[.,.]],[.,.]]]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,1]
=> 0
[.,[.,[[[.,.],.],[.,.]]]]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [5,2,1]
=> 0
[.,[.,[[.,[.,[.,.]]],.]]]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> 0
[.,[.,[[.,[[.,.],.]],.]]]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1]
=> 0
[.,[.,[[[.,.],[.,.]],.]]]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1]
=> 0
[.,[.,[[[.,[.,.]],.],.]]]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1,1]
=> 0
[.,[[.,.],[.,[.,[.,.]]]]]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1]
=> ? = 0
[.,[[.,.],[.,[[.,.],.]]]]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,3,1]
=> 0
[.,[[.,.],[[.,.],[.,.]]]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [5,3,1]
=> 0
[.,[[.,.],[[.,[.,.]],.]]]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [4,3,1,1]
=> 0
[.,[[.,[.,.]],[.,[.,.]]]]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,1]
=> ? = 0
[.,[[.,[.,.]],[[.,.],.]]]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1,1]
=> 0
[.,[[[.,.],.],[.,[.,.]]]]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [5,4,1]
=> 0
[.,[[.,[.,[.,.]]],[.,.]]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> ? = 0
[.,[[.,[[.,.],.]],[.,.]]]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [5,2,1,1]
=> 0
[.,[[[.,.],[.,.]],[.,.]]]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [5,3,1,1]
=> 0
[.,[[[.,[.,.]],.],[.,.]]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,1,1]
=> 0
[.,[[.,[.,[.,[.,.]]]],.]]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> ? = 0
[.,[[.,[.,[[.,.],.]]],.]]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1]
=> 0
[.,[[.,[[.,.],[.,.]]],.]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1]
=> 0
[.,[[.,[[.,[.,.]],.]],.]]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1,1]
=> 0
[.,[[[.,.],[.,[.,.]]],.]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1]
=> 0
[.,[[[.,[.,.]],[.,.]],.]]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1,1]
=> 0
[.,[[[.,[.,[.,.]]],.],.]]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2,1]
=> 0
[[.,.],[.,[.,[.,[.,.]]]]]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2]
=> ? = 0
[[.,.],[.,[.,[[.,.],.]]]]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [4,3,2]
=> 0
[[.,.],[.,[[.,.],[.,.]]]]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [5,3,2]
=> 0
[[.,.],[.,[[.,[.,.]],.]]]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2]
=> 0
[[.,.],[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [5,4,2]
=> 0
[[.,.],[[.,[.,.]],[.,.]]]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2]
=> 0
[[.,.],[[.,[.,[.,.]]],.]]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2]
=> 0
[[.,[.,.]],[.,[.,[.,.]]]]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> ? = 0
[[.,[.,.]],[.,[[.,.],.]]]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,1,1]
=> 0
[[.,[.,.]],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,1,1]
=> 0
[[.,[.,.]],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1,1]
=> 0
[[[.,.],.],[.,[.,[.,.]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [5,4,3]
=> 0
[[.,[.,[.,.]]],[.,[.,.]]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> ? = 1
[[.,[.,[.,.]]],[[.,.],.]]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,2,2,2,1]
=> 0
[[.,[[.,.],.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [5,4,1,1]
=> 0
[[[.,.],[.,.]],[.,[.,.]]]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2]
=> ? = 0
[[.,[.,[.,[.,.]]]],[.,.]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> ? = 0
[[[.,.],[.,[.,.]]],[.,.]]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2]
=> ? = 0
[[[.,[.,.]],[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> ? = 1
[[.,[.,[.,[.,[.,.]]]]],.]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> ? = 0
[[[.,.],[.,[.,[.,.]]]],.]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2]
=> ? = 0
[[[.,[.,.]],[.,[.,.]]],.]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> ? = 0
[[[.,[.,[.,.]]],[.,.]],.]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> ? = 0
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1]
=> ? = 0
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1]
=> ? = 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,1]
=> ? = 1
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,1]
=> ? = 1
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1]
=> ? = 1
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,1,1]
=> ? = 0
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,2,1]
=> ? = 1
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1]
=> ? = 1
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [6,4,2,1]
=> ? = 0
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,1]
=> ? = 0
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1,1]
=> ? = 0
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,3,2,1,1,1]
=> ? = 0
[.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [6,5,2,1]
=> ? = 0
[.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,2,1]
=> ? = 0
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [6,3,2,1,1]
=> ? = 0
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [6,4,2,1,1]
=> ? = 0
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [6,3,2,1,1,1]
=> ? = 0
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,2,1]
=> ? = 1
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [5,3,2,2,1]
=> ? = 0
[.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [4,3,2,2,1,1]
=> ? = 0
[.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,2,1]
=> ? = 0
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [5,3,2,2,1,1]
=> ? = 0
[.,[.,[[[.,[.,[.,.]]],.],.]]]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,2,2,1]
=> ? = 0
[.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1]
=> ? = 1
[.,[[.,.],[.,[.,[[.,.],.]]]]]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1]
=> ? = 0
[.,[[.,.],[.,[[.,.],[.,.]]]]]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> [6,4,3,1]
=> ? = 0
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1,1]
=> ? = 0
[.,[[.,.],[[.,.],[.,[.,.]]]]]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> [6,5,3,1]
=> ? = 0
[.,[[.,.],[[.,[.,.]],[.,.]]]]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> [6,4,3,1,1]
=> ? = 0
[.,[[.,.],[[.,[.,[.,.]]],.]]]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,1]
=> ? = 0
[.,[[.,[.,.]],[.,[.,[.,.]]]]]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,1]
=> ? = 0
[.,[[.,[.,.]],[.,[[.,.],.]]]]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,1,1]
=> ? = 0
[.,[[.,[.,.]],[[.,.],[.,.]]]]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [6,4,2,1,1,1]
=> ? = 0
[.,[[.,[.,.]],[[.,[.,.]],.]]]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,2,1,1]
=> ? = 0
Description
The constant term of the character polynomial of an integer partition.
The definition of the character polynomial can be found in [1]. Indeed, this constant term is $0$ for partitions $\lambda \neq 1^n$ and $1$ for $\lambda = 1^n$.
Matching statistic: St000264
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 25%
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 25%
Values
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? = 0 + 4
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([],5)
=> ? = 0 + 4
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 0 + 4
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? = 0 + 4
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? = 0 + 4
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? = 0 + 4
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? = 0 + 4
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? = 0 + 4
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? = 0 + 4
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> ? = 0 + 4
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ([(3,4)],5)
=> ? = 0 + 4
[[.,[.,[.,[.,.]]]],.]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ? = 0 + 4
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([],6)
=> ? = 1 + 4
[.,[.,[.,[.,[[.,.],.]]]]]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 4
[.,[.,[.,[[.,.],[.,.]]]]]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 4
[.,[.,[.,[[.,[.,.]],.]]]]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,2,3,4,5] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 4
[.,[.,[.,[[[.,.],.],.]]]]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 0 + 4
[.,[.,[[.,.],[.,[.,.]]]]]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? = 0 + 4
[.,[.,[[.,.],[[.,.],.]]]]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 0 + 4
[.,[.,[[.,[.,.]],[.,.]]]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,5,2,3,4,6] => ([(2,5),(3,5),(4,5)],6)
=> ? = 0 + 4
[.,[.,[[[.,.],.],[.,.]]]]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [4,5,1,2,3,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 0 + 4
[.,[.,[[.,[.,[.,.]]],.]]]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,2,6,3,4,5] => ([(2,5),(3,5),(4,5)],6)
=> ? = 0 + 4
[.,[.,[[.,[[.,.],.]],.]]]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [5,1,6,2,3,4] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 0 + 4
[.,[.,[[[.,.],[.,.]],.]]]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [4,1,6,2,3,5] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 0 + 4
[.,[.,[[[.,[.,.]],.],.]]]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,5,6,2,3,4] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 0 + 4
[.,[[.,.],[.,[.,[.,.]]]]]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ? = 0 + 4
[.,[[.,.],[.,[[.,.],.]]]]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [3,6,1,2,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4 = 0 + 4
[.,[[.,.],[[.,.],[.,.]]]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4 = 0 + 4
[.,[[.,.],[[.,[.,.]],.]]]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [3,1,6,2,4,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 0 + 4
[.,[[.,[.,.]],[.,[.,.]]]]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,4,2,3,5,6] => ([(3,5),(4,5)],6)
=> ? = 0 + 4
[.,[[.,[.,.]],[[.,.],.]]]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,4,6,2,3,5] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4 = 0 + 4
[.,[[[.,.],.],[.,[.,.]]]]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,1,2,5,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 0 + 4
[.,[[.,[.,[.,.]]],[.,.]]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,2,5,3,4,6] => ([(3,5),(4,5)],6)
=> ? = 0 + 4
[.,[[.,[[.,.],.]],[.,.]]]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,1,5,2,3,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4 = 0 + 4
[.,[[[.,.],[.,.]],[.,.]]]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4,6] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 0 + 4
[.,[[[.,[.,.]],.],[.,.]]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,4,5,2,3,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 0 + 4
[.,[[.,[.,[.,[.,.]]]],.]]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,2,3,6,4,5] => ([(3,5),(4,5)],6)
=> ? = 0 + 4
[.,[[.,[.,[[.,.],.]]],.]]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [5,1,2,6,3,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4 = 0 + 4
[.,[[.,[[.,.],[.,.]]],.]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [4,1,2,6,3,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 0 + 4
[.,[[.,[[.,[.,.]],.]],.]]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,5,2,6,3,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4 = 0 + 4
[.,[[[.,.],[.,[.,.]]],.]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [3,1,2,6,4,5] => ([(0,5),(1,5),(2,4),(3,4)],6)
=> ? = 0 + 4
[.,[[[.,[.,.]],[.,.]],.]]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,4,2,6,3,5] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 0 + 4
[.,[[[.,[.,[.,.]]],.],.]]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,2,5,6,3,4] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 0 + 4
[[.,.],[.,[.,[.,[.,.]]]]]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => ([(4,5)],6)
=> ? = 0 + 4
[[.,.],[.,[.,[[.,.],.]]]]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 0 + 4
[[.,.],[.,[[.,.],[.,.]]]]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,5,1,3,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 0 + 4
[[.,.],[.,[[.,[.,.]],.]]]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [2,1,6,3,4,5] => ([(0,1),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 4
[[.,.],[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,4,1,3,5,6] => ([(2,5),(3,4),(4,5)],6)
=> ? = 0 + 4
[[.,.],[[.,[.,.]],[.,.]]]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [2,1,5,3,4,6] => ([(1,2),(3,5),(4,5)],6)
=> ? = 0 + 4
[[.,.],[[.,[.,[.,.]]],.]]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [2,1,3,6,4,5] => ([(1,2),(3,5),(4,5)],6)
=> ? = 0 + 4
[[.,[.,.]],[.,[.,[.,.]]]]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => ([(4,5)],6)
=> ? = 0 + 4
[[.,[.,.]],[.,[[.,.],.]]]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,3,6,2,4,5] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 0 + 4
[[.,[.,.]],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4,6] => ([(2,5),(3,4),(4,5)],6)
=> ? = 0 + 4
[[.,[.,.]],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,3,2,6,4,5] => ([(1,2),(3,5),(4,5)],6)
=> ? = 0 + 4
[[[.,.],.],[.,[.,[.,.]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,1,4,5,6] => ([(3,5),(4,5)],6)
=> ? = 0 + 4
[[.,[.,[.,.]]],[.,[.,.]]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,2,4,3,5,6] => ([(4,5)],6)
=> ? = 1 + 4
[[.,[.,[.,.]]],[[.,.],.]]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,2,4,6,3,5] => ([(2,5),(3,4),(4,5)],6)
=> ? = 0 + 4
[[.,[[.,.],.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [3,1,4,2,5,6] => ([(2,5),(3,4),(4,5)],6)
=> ? = 0 + 4
[[[.,.],[.,.]],[.,[.,.]]]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,5,6] => ([(2,5),(3,4)],6)
=> ? = 0 + 4
[[[.,[.,.]],.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,4,2,5,6] => ([(3,5),(4,5)],6)
=> ? = 0 + 4
[[.,[.,[.,[.,.]]]],[.,.]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,2,3,5,4,6] => ([(4,5)],6)
=> ? = 0 + 4
[[.,[.,[[.,.],.]]],[.,.]]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [4,1,2,5,3,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 0 + 4
[[.,[[.,.],[.,.]]],[.,.]]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4,6] => ([(1,2),(3,5),(4,5)],6)
=> ? = 0 + 4
[[.,[[.,[.,.]],.]],[.,.]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,4,2,5,3,6] => ([(2,5),(3,4),(4,5)],6)
=> ? = 0 + 4
[[[.,.],[.,[.,.]]],[.,.]]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,3,5,4,6] => ([(2,5),(3,4)],6)
=> ? = 0 + 4
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [6,7,1,2,3,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [5,7,1,2,3,4,6] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [5,6,1,2,3,4,7] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [6,1,7,2,3,4,5] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [5,1,7,2,3,4,6] => ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,6,7,2,3,4,5] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [5,6,7,1,2,3,4] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 4 = 0 + 4
[.,[.,[[.,.],[.,[[.,.],.]]]]]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [4,7,1,2,3,5,6] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [4,6,1,2,3,5,7] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [4,1,7,2,3,5,6] => ([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
[.,[.,[[.,.],[[[.,.],.],.]]]]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [4,6,7,1,2,3,5] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [1,5,7,2,3,4,6] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
[.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [4,5,1,2,3,6,7] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
[.,[.,[[[.,.],.],[[.,.],.]]]]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [4,5,7,1,2,3,6] => ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [5,1,6,2,3,4,7] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [4,1,6,2,3,5,7] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [1,5,6,2,3,4,7] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
[.,[.,[[[[.,.],.],.],[.,.]]]]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [4,5,6,1,2,3,7] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 4 = 0 + 4
[.,[.,[[.,[.,[[.,.],.]]],.]]]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [6,1,2,7,3,4,5] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [5,1,2,7,3,4,6] => ([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
[.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,6,2,7,3,4,5] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
[.,[.,[[.,[[[.,.],.],.]],.]]]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [5,6,1,7,2,3,4] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
[.,[.,[[[.,.],[[.,.],.]],.]]]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [4,6,1,7,2,3,5] => ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 4 = 0 + 4
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [4,5,1,7,2,3,6] => ([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 4 = 0 + 4
[.,[.,[[[.,[.,[.,.]]],.],.]]]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,2,6,7,3,4,5] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
[.,[.,[[[.,[[.,.],.]],.],.]]]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [5,1,6,7,2,3,4] => ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> [4,1,6,7,2,3,5] => ([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 4 = 0 + 4
[.,[.,[[[[.,[.,.]],.],.],.]]]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,5,6,7,2,3,4] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 4 = 0 + 4
[.,[[.,.],[.,[.,[[.,.],.]]]]]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [3,7,1,2,4,5,6] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
[.,[[.,.],[.,[[.,.],[.,.]]]]]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [3,6,1,2,4,5,7] => ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 0 + 4
[.,[[.,.],[.,[[[.,.],.],.]]]]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [3,6,7,1,2,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
[.,[[.,.],[[.,.],[.,[.,.]]]]]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [3,5,1,2,4,6,7] => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 0 + 4
[.,[[.,.],[[.,.],[[.,.],.]]]]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [3,5,7,1,2,4,6] => ([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 0 + 4
[.,[[.,.],[[[.,.],.],[.,.]]]]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [3,5,6,1,2,4,7] => ([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 0 + 4
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
Matching statistic: St001651
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
Mp00196: Lattices —The modular quotient of a lattice.⟶ Lattices
St001651: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 25%
Mp00208: Permutations —lattice of intervals⟶ Lattices
Mp00196: Lattices —The modular quotient of a lattice.⟶ Lattices
St001651: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 25%
Values
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ([(0,1)],2)
=> 0
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,1)],2)
=> 0
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,1)],2)
=> 0
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(0,1)],2)
=> 0
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ([(0,1)],2)
=> 0
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(0,1)],2)
=> 0
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ([(0,1)],2)
=> 0
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ([],1)
=> ? = 0
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ([],1)
=> ? = 0
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ([(0,1)],2)
=> 0
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,15),(2,14),(3,19),(3,21),(4,20),(4,21),(5,14),(5,19),(6,15),(6,20),(8,10),(9,11),(10,12),(11,13),(12,7),(13,7),(14,8),(15,9),(16,10),(16,18),(17,11),(17,18),(18,12),(18,13),(19,8),(19,16),(20,9),(20,17),(21,16),(21,17)],22)
=> ?
=> ? = 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,14),(3,13),(4,12),(4,16),(5,13),(5,17),(6,16),(6,17),(8,10),(9,11),(10,7),(11,7),(12,8),(13,9),(14,12),(15,10),(15,11),(16,8),(16,15),(17,9),(17,15)],18)
=> ([(0,1)],2)
=> 0
[.,[.,[.,[[.,.],[.,.]]]]]
=> [4,6,5,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,12),(5,14),(6,10),(6,14),(8,7),(9,7),(10,9),(11,10),(12,8),(13,11),(14,8),(14,9)],15)
=> ([(0,1)],2)
=> 0
[.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,12),(5,14),(6,10),(6,14),(8,7),(9,7),(10,9),(11,10),(12,8),(13,11),(14,8),(14,9)],15)
=> ([(0,1)],2)
=> 0
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,12),(4,13),(4,14),(5,11),(5,15),(6,12),(6,15),(8,11),(9,7),(10,7),(11,9),(12,10),(13,8),(14,8),(15,9),(15,10)],16)
=> ([(0,1)],2)
=> 0
[.,[.,[[.,.],[.,[.,.]]]]]
=> [3,6,5,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,13),(4,10),(5,11),(5,12),(6,9),(6,13),(8,10),(9,7),(10,9),(11,8),(12,8),(13,7)],14)
=> ([(0,1)],2)
=> 0
[.,[.,[[.,.],[[.,.],.]]]]
=> [3,5,6,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(10,9),(11,10)],13)
=> ([(0,1)],2)
=> 0
[.,[.,[[.,[.,.]],[.,.]]]]
=> [4,3,6,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(6,10),(7,12),(8,11),(9,11),(10,12),(11,10)],13)
=> ([(0,1)],2)
=> 0
[.,[.,[[[.,.],.],[.,.]]]]
=> [3,4,6,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,10),(5,12),(6,9),(6,11),(8,10),(9,8),(10,7),(11,8),(12,7),(13,9)],14)
=> ([(0,1)],2)
=> 0
[.,[.,[[.,[.,[.,.]]],.]]]
=> [5,4,3,6,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,13),(4,10),(5,11),(5,12),(6,9),(6,13),(8,10),(9,7),(10,9),(11,8),(12,8),(13,7)],14)
=> ([(0,1)],2)
=> 0
[.,[.,[[.,[[.,.],.]],.]]]
=> [4,5,3,6,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(10,9),(11,10)],13)
=> ([(0,1)],2)
=> 0
[.,[.,[[[.,.],[.,.]],.]]]
=> [3,5,4,6,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,12),(4,13),(5,13),(6,9),(6,12),(8,9),(9,7),(10,8),(11,8),(12,7),(13,10),(13,11)],14)
=> ([(0,1)],2)
=> 0
[.,[.,[[[.,[.,.]],.],.]]]
=> [4,3,5,6,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,10),(5,12),(6,9),(6,11),(8,10),(9,8),(10,7),(11,8),(12,7),(13,9)],14)
=> ([(0,1)],2)
=> 0
[.,[[.,.],[.,[.,[.,.]]]]]
=> [2,6,5,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,13),(3,12),(4,7),(5,12),(5,14),(6,13),(6,14),(8,11),(9,8),(10,8),(11,7),(12,9),(13,10),(14,9),(14,10)],15)
=> ([(0,1)],2)
=> 0
[.,[[.,.],[.,[[.,.],.]]]]
=> [2,5,6,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,9),(5,11),(6,7),(6,10),(7,12),(8,10),(10,12),(11,9),(12,11)],13)
=> ([(0,1)],2)
=> 0
[.,[[.,.],[[.,.],[.,.]]]]
=> [2,4,6,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,10),(5,11),(6,8),(7,11),(9,10),(10,8),(11,9)],12)
=> ([(0,1)],2)
=> 0
[.,[[.,.],[[.,[.,.]],.]]]
=> [2,5,4,6,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,10),(5,11),(6,8),(7,11),(9,10),(10,8),(11,9)],12)
=> ([(0,1)],2)
=> 0
[.,[[.,[.,.]],[.,[.,.]]]]
=> [3,2,6,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ([(0,1)],2)
=> 0
[.,[[.,[.,.]],[[.,.],.]]]
=> [3,2,5,6,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,10),(3,7),(4,7),(5,8),(6,8),(7,11),(8,9),(9,11),(11,10)],12)
=> ([(0,1)],2)
=> 0
[.,[[[.,.],.],[.,[.,.]]]]
=> [2,3,6,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,13),(4,7),(5,10),(5,13),(6,11),(6,12),(8,10),(9,7),(10,9),(11,8),(12,8),(13,9)],14)
=> ([(0,1)],2)
=> 0
[.,[[.,[.,[.,.]]],[.,.]]]
=> [4,3,2,6,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ([(0,1)],2)
=> 0
[.,[[.,[[.,.],.]],[.,.]]]
=> [3,4,2,6,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,10),(3,7),(4,7),(5,8),(6,8),(7,11),(8,9),(9,11),(11,10)],12)
=> ([(0,1)],2)
=> 0
[.,[[[.,.],[.,.]],[.,.]]]
=> [2,4,3,6,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,10),(3,7),(4,7),(5,8),(6,8),(7,11),(8,9),(8,11),(9,12),(11,12),(12,10)],13)
=> ([(0,1)],2)
=> 0
[.,[[[.,[.,.]],.],[.,.]]]
=> [3,2,4,6,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,7),(5,9),(6,10),(6,11),(7,11),(8,10),(10,12),(11,12),(12,9)],13)
=> ([(0,1)],2)
=> 0
[.,[[.,[.,[.,[.,.]]]],.]]
=> [5,4,3,2,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,13),(3,12),(4,7),(5,12),(5,14),(6,13),(6,14),(8,11),(9,8),(10,8),(11,7),(12,9),(13,10),(14,9),(14,10)],15)
=> ([(0,1)],2)
=> 0
[.,[[.,[.,[[.,.],.]]],.]]
=> [4,5,3,2,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,9),(5,11),(6,7),(6,10),(7,12),(8,10),(10,12),(11,9),(12,11)],13)
=> ([(0,1)],2)
=> 0
[.,[[.,[[.,.],[.,.]]],.]]
=> [3,5,4,2,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,10),(5,11),(6,8),(7,11),(9,10),(10,8),(11,9)],12)
=> ([(0,1)],2)
=> 0
[.,[[.,[[.,[.,.]],.]],.]]
=> [4,3,5,2,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,10),(5,11),(6,8),(7,11),(9,10),(10,8),(11,9)],12)
=> ([(0,1)],2)
=> 0
[.,[[[.,.],[.,[.,.]]],.]]
=> [2,5,4,3,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,7),(6,11),(6,12),(8,7),(9,8),(10,8),(11,13),(12,13),(13,9),(13,10)],14)
=> ([(0,1)],2)
=> 0
[.,[[[.,[.,.]],[.,.]],.]]
=> [3,2,5,4,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,10),(3,7),(4,7),(5,8),(6,8),(7,11),(8,9),(8,11),(9,12),(11,12),(12,10)],13)
=> ([(0,1)],2)
=> 0
[.,[[[.,[.,[.,.]]],.],.]]
=> [4,3,2,5,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,13),(4,7),(5,10),(5,13),(6,11),(6,12),(8,10),(9,7),(10,9),(11,8),(12,8),(13,9)],14)
=> ([(0,1)],2)
=> 0
[[.,.],[.,[.,[.,[.,.]]]]]
=> [1,6,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ([(0,1)],2)
=> 0
[[.,.],[.,[.,[[.,.],.]]]]
=> [1,5,6,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,7),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,11),(14,8),(14,9)],15)
=> ([(0,1)],2)
=> 0
[[.,.],[.,[[.,.],[.,.]]]]
=> [1,4,6,5,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ([(0,1)],2)
=> 0
[[.,.],[.,[[.,[.,.]],.]]]
=> [1,5,4,6,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ([(0,1)],2)
=> 0
[[.,.],[[.,.],[.,[.,.]]]]
=> [1,3,6,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,7),(3,7),(3,8),(4,10),(5,11),(6,9),(7,12),(8,12),(10,9),(11,10),(12,11)],13)
=> ([(0,1)],2)
=> 0
[[.,.],[[.,[.,.]],[.,.]]]
=> [1,4,3,6,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,8),(5,7),(6,7),(7,11),(8,11),(9,10),(11,9)],12)
=> ([(0,1)],2)
=> 0
[[.,.],[[.,[.,[.,.]]],.]]
=> [1,5,4,3,6,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,7),(3,7),(3,8),(4,10),(5,11),(6,9),(7,12),(8,12),(10,9),(11,10),(12,11)],13)
=> ([(0,1)],2)
=> 0
[[.,[.,.]],[.,[.,[.,.]]]]
=> [2,1,6,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ([],1)
=> ? = 0
[[.,[.,.]],[.,[[.,.],.]]]
=> [2,1,5,6,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,8),(3,8),(4,9),(5,9),(6,7),(6,10),(7,12),(8,11),(9,10),(10,12),(12,11)],13)
=> ([],1)
=> ? = 0
[[.,[.,.]],[[.,.],[.,.]]]
=> [2,1,4,6,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,7),(4,7),(5,8),(6,8),(7,11),(8,9),(9,10),(10,11)],12)
=> ([],1)
=> ? = 0
[[.,[.,.]],[[.,[.,.]],.]]
=> [2,1,5,4,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,7),(4,7),(5,8),(6,8),(7,11),(8,9),(9,10),(10,11)],12)
=> ([],1)
=> ? = 0
[[[.,.],.],[.,[.,[.,.]]]]
=> [1,2,6,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,12),(4,11),(4,14),(5,12),(5,15),(6,13),(6,15),(8,11),(9,8),(10,8),(11,7),(12,9),(13,10),(14,7),(15,9),(15,10)],16)
=> ([(0,1)],2)
=> 0
[[.,[.,[.,.]]],[.,[.,.]]]
=> [3,2,1,6,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,12),(5,12),(5,13),(6,10),(6,11),(8,7),(9,7),(10,8),(11,8),(12,9),(13,9)],14)
=> ([],1)
=> ? = 1
[[.,[.,[.,.]]],[[.,.],.]]
=> [3,2,1,5,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,8),(3,7),(4,9),(5,9),(6,7),(6,8),(7,11),(8,11),(9,10),(10,12),(11,12)],13)
=> ([],1)
=> ? = 0
[[.,[[.,.],.]],[.,[.,.]]]
=> [2,3,1,6,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,8),(3,7),(4,9),(5,9),(6,7),(6,8),(7,11),(8,11),(9,10),(10,12),(11,12)],13)
=> ([],1)
=> ? = 0
[[[.,.],[.,.]],[.,[.,.]]]
=> [1,3,2,6,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ([(0,1)],2)
=> 0
[[[.,[.,.]],.],[.,[.,.]]]
=> [2,1,3,6,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,9),(5,10),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,10)],14)
=> ([],1)
=> ? = 0
[[.,[.,[.,[.,.]]]],[.,.]]
=> [4,3,2,1,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ([],1)
=> ? = 0
[[.,[.,[[.,.],.]]],[.,.]]
=> [3,4,2,1,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,8),(3,8),(4,9),(5,9),(6,7),(6,10),(7,12),(8,11),(9,10),(10,12),(12,11)],13)
=> ([],1)
=> ? = 0
[[.,[[.,.],[.,.]]],[.,.]]
=> [2,4,3,1,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,7),(4,7),(5,8),(6,8),(7,11),(8,9),(9,10),(10,11)],12)
=> ([],1)
=> ? = 0
[[.,[[.,[.,.]],.]],[.,.]]
=> [3,2,4,1,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,7),(4,7),(5,8),(6,8),(7,11),(8,9),(9,10),(10,11)],12)
=> ([],1)
=> ? = 0
[[[.,.],[.,[.,.]]],[.,.]]
=> [1,4,3,2,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,9),(4,12),(5,12),(6,10),(6,11),(8,7),(9,7),(10,13),(11,13),(12,8),(13,8),(13,9)],14)
=> ([(0,1)],2)
=> 0
[[[.,[.,.]],[.,.]],[.,.]]
=> [2,1,4,3,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,7),(5,9),(6,9),(7,11),(8,10),(9,10),(9,11),(10,12),(11,12)],13)
=> ([],1)
=> ? = 1
[[[.,[.,[.,.]]],.],[.,.]]
=> [3,2,1,4,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,9),(5,10),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,10)],14)
=> ([],1)
=> ? = 0
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => ?
=> ?
=> ? = 0
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => ?
=> ?
=> ? = 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [5,7,6,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,15),(2,16),(3,16),(4,14),(5,15),(5,18),(6,13),(6,19),(7,18),(7,19),(9,11),(10,12),(11,8),(12,8),(13,10),(14,13),(15,9),(16,14),(17,11),(17,12),(18,9),(18,17),(19,10),(19,17)],20)
=> ?
=> ? = 1
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,15),(2,16),(3,16),(4,14),(5,15),(5,18),(6,13),(6,19),(7,18),(7,19),(9,11),(10,12),(11,8),(12,8),(13,10),(14,13),(15,9),(16,14),(17,11),(17,12),(18,9),(18,17),(19,10),(19,17)],20)
=> ?
=> ? = 1
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [5,6,7,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,17),(2,16),(3,15),(4,16),(4,17),(5,14),(5,19),(6,15),(6,20),(7,19),(7,20),(9,14),(10,12),(11,13),(12,8),(13,8),(14,10),(15,11),(16,9),(17,9),(18,12),(18,13),(19,10),(19,18),(20,11),(20,18)],21)
=> ?
=> ? = 0
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [4,7,6,5,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,13),(2,16),(3,15),(4,14),(5,15),(5,16),(6,12),(6,17),(7,14),(7,17),(9,13),(10,8),(11,8),(12,10),(13,12),(14,11),(15,9),(16,9),(17,10),(17,11)],18)
=> ?
=> ? = 1
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [4,6,7,5,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,13),(2,14),(3,15),(4,15),(5,12),(6,14),(6,16),(7,11),(7,16),(9,8),(10,8),(11,10),(12,13),(13,11),(14,9),(15,12),(16,9),(16,10)],17)
=> ?
=> ? = 0
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [5,4,7,6,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,15),(2,15),(3,14),(4,14),(5,13),(6,12),(6,16),(7,13),(7,16),(9,12),(10,8),(11,8),(12,10),(13,11),(14,9),(15,9),(16,10),(16,11)],17)
=> ?
=> ? = 0
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [4,5,7,6,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,16),(2,16),(3,14),(4,15),(5,13),(5,15),(6,12),(6,17),(7,14),(7,17),(9,12),(10,8),(11,8),(12,10),(13,9),(14,11),(15,9),(16,13),(17,10),(17,11)],18)
=> ?
=> ? = 0
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,13),(2,16),(3,15),(4,14),(5,15),(5,16),(6,12),(6,17),(7,14),(7,17),(9,13),(10,8),(11,8),(12,10),(13,12),(14,11),(15,9),(16,9),(17,10),(17,11)],18)
=> ?
=> ? = 1
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [5,6,4,7,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,13),(2,14),(3,15),(4,15),(5,12),(6,14),(6,16),(7,11),(7,16),(9,8),(10,8),(11,10),(12,13),(13,11),(14,9),(15,12),(16,9),(16,10)],17)
=> ?
=> ? = 0
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [4,6,5,7,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,15),(2,17),(3,17),(4,14),(5,13),(6,15),(6,16),(7,12),(7,16),(9,12),(10,8),(11,8),(12,11),(13,9),(14,9),(15,10),(16,10),(16,11),(17,13),(17,14)],18)
=> ?
=> ? = 0
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [5,4,6,7,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,16),(2,16),(3,14),(4,15),(5,13),(5,15),(6,12),(6,17),(7,14),(7,17),(9,12),(10,8),(11,8),(12,10),(13,9),(14,11),(15,9),(16,13),(17,10),(17,11)],18)
=> ?
=> ? = 0
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [4,5,6,7,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,16),(2,15),(3,17),(4,14),(4,19),(5,15),(5,18),(6,16),(6,18),(7,17),(7,19),(9,14),(10,9),(11,9),(12,8),(13,8),(14,12),(15,10),(16,11),(17,13),(18,10),(18,11),(19,12),(19,13)],20)
=> ?
=> ? = 0
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [3,7,6,5,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,16),(2,13),(3,15),(4,14),(5,12),(5,16),(6,14),(6,17),(7,15),(7,17),(9,13),(10,9),(11,9),(12,8),(13,12),(14,10),(15,11),(16,8),(17,10),(17,11)],18)
=> ?
=> ? = 1
[.,[.,[[.,.],[.,[[.,.],.]]]]]
=> [3,6,7,5,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,14),(2,12),(3,15),(4,15),(5,13),(6,11),(6,14),(7,10),(7,13),(9,12),(10,9),(11,8),(12,11),(13,9),(14,8),(15,10)],16)
=> ?
=> ? = 0
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [3,5,7,6,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(2,9),(3,8),(4,11),(5,12),(6,13),(7,8),(7,10),(8,14),(9,13),(10,14),(11,12),(12,10),(13,11)],15)
=> ?
=> ? = 0
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [3,6,5,7,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(2,9),(3,8),(4,11),(5,12),(6,13),(7,8),(7,10),(8,14),(9,13),(10,14),(11,12),(12,10),(13,11)],15)
=> ?
=> ? = 0
[.,[.,[[.,.],[[[.,.],.],.]]]]
=> [3,5,6,7,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,14),(2,13),(3,12),(4,15),(5,11),(6,13),(6,14),(7,10),(7,15),(9,12),(10,8),(11,10),(12,11),(13,9),(14,9),(15,8)],16)
=> ?
=> ? = 0
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [4,3,7,6,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,14),(2,15),(3,15),(4,13),(5,12),(6,11),(6,14),(7,12),(7,13),(9,11),(10,9),(11,8),(12,10),(13,10),(14,8),(15,9)],16)
=> ?
=> ? = 0
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [4,3,6,7,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,11),(2,8),(3,8),(4,9),(5,10),(6,10),(7,9),(7,12),(8,14),(9,13),(10,11),(11,14),(12,13),(14,12)],15)
=> ?
=> ? = 0
[.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [3,4,7,6,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,16),(2,15),(3,14),(4,13),(5,12),(5,16),(6,11),(6,13),(7,14),(7,15),(9,12),(10,11),(11,9),(12,8),(13,9),(14,10),(15,10),(16,8)],17)
=> ?
=> ? = 0
[.,[.,[[[.,.],.],[[.,.],.]]]]
=> [3,4,6,7,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,14),(2,12),(3,15),(4,15),(5,13),(6,11),(6,14),(7,10),(7,13),(9,11),(10,9),(11,8),(12,10),(13,9),(14,8),(15,12)],16)
=> ?
=> ? = 0
[.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [5,4,3,7,6,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,14),(2,15),(3,15),(4,13),(5,12),(6,11),(6,14),(7,12),(7,13),(9,11),(10,9),(11,8),(12,10),(13,10),(14,8),(15,9)],16)
=> ?
=> ? = 0
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [4,5,3,7,6,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,11),(2,8),(3,8),(4,9),(5,10),(6,10),(7,9),(7,12),(8,14),(9,13),(10,11),(11,14),(12,13),(14,12)],15)
=> ?
=> ? = 0
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [3,5,4,7,6,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,13),(2,14),(3,14),(4,12),(5,15),(6,15),(7,11),(7,13),(9,11),(10,9),(11,8),(12,9),(13,8),(14,10),(15,10),(15,12)],16)
=> ?
=> ? = 0
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [4,3,5,7,6,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,14),(2,14),(3,15),(4,15),(5,13),(6,10),(6,11),(7,12),(7,13),(9,12),(10,9),(11,9),(12,8),(13,8),(14,11),(15,10)],16)
=> ?
=> ? = 0
[.,[.,[[[[.,.],.],.],[.,.]]]]
=> [3,4,5,7,6,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,15),(2,16),(3,16),(4,14),(5,13),(5,15),(6,12),(6,17),(7,14),(7,17),(9,13),(10,9),(11,9),(12,10),(13,8),(14,11),(15,8),(16,12),(17,10),(17,11)],18)
=> ?
=> ? = 0
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [6,5,4,3,7,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,16),(2,13),(3,15),(4,14),(5,12),(5,16),(6,14),(6,17),(7,15),(7,17),(9,13),(10,9),(11,9),(12,8),(13,12),(14,10),(15,11),(16,8),(17,10),(17,11)],18)
=> ?
=> ? = 1
[.,[.,[[.,[.,[[.,.],.]]],.]]]
=> [5,6,4,3,7,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,14),(2,12),(3,15),(4,15),(5,13),(6,11),(6,14),(7,10),(7,13),(9,12),(10,9),(11,8),(12,11),(13,9),(14,8),(15,10)],16)
=> ?
=> ? = 0
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [4,6,5,3,7,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(2,9),(3,8),(4,11),(5,12),(6,13),(7,8),(7,10),(8,14),(9,13),(10,14),(11,12),(12,10),(13,11)],15)
=> ?
=> ? = 0
[.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [5,4,6,3,7,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(2,9),(3,8),(4,11),(5,12),(6,13),(7,8),(7,10),(8,14),(9,13),(10,14),(11,12),(12,10),(13,11)],15)
=> ?
=> ? = 0
[.,[.,[[.,[[[.,.],.],.]],.]]]
=> [4,5,6,3,7,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,14),(2,13),(3,12),(4,15),(5,11),(6,13),(6,14),(7,10),(7,15),(9,12),(10,8),(11,10),(12,11),(13,9),(14,9),(15,8)],16)
=> ?
=> ? = 0
Description
The Frankl number of a lattice.
For a lattice $L$ on at least two elements, this is
$$
\max_x(|L|-2|[x, 1]|),
$$
where we maximize over all join irreducible elements and $[x, 1]$ denotes the interval from $x$ to the top element. Frankl's conjecture asserts that this number is non-negative, and zero if and only if $L$ is a Boolean lattice.
Matching statistic: St001878
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
Mp00197: Lattices —lattice of congruences⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 25%
Mp00208: Permutations —lattice of intervals⟶ Lattices
Mp00197: Lattices —lattice of congruences⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 25%
Values
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 0 + 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 0 + 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ([(0,1)],2)
=> ? = 0 + 1
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ([(0,1)],2)
=> ? = 0 + 1
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,15),(2,14),(3,19),(3,21),(4,20),(4,21),(5,14),(5,19),(6,15),(6,20),(8,10),(9,11),(10,12),(11,13),(12,7),(13,7),(14,8),(15,9),(16,10),(16,18),(17,11),(17,18),(18,12),(18,13),(19,8),(19,16),(20,9),(20,17),(21,16),(21,17)],22)
=> ?
=> ? = 1 + 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,14),(3,13),(4,12),(4,16),(5,13),(5,17),(6,16),(6,17),(8,10),(9,11),(10,7),(11,7),(12,8),(13,9),(14,12),(15,10),(15,11),(16,8),(16,15),(17,9),(17,15)],18)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> [4,6,5,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,12),(5,14),(6,10),(6,14),(8,7),(9,7),(10,9),(11,10),(12,8),(13,11),(14,8),(14,9)],15)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,12),(5,14),(6,10),(6,14),(8,7),(9,7),(10,9),(11,10),(12,8),(13,11),(14,8),(14,9)],15)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,12),(4,13),(4,14),(5,11),(5,15),(6,12),(6,15),(8,11),(9,7),(10,7),(11,9),(12,10),(13,8),(14,8),(15,9),(15,10)],16)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> [3,6,5,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,13),(4,10),(5,11),(5,12),(6,9),(6,13),(8,10),(9,7),(10,9),(11,8),(12,8),(13,7)],14)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[.,[[.,.],[[.,.],.]]]]
=> [3,5,6,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(10,9),(11,10)],13)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[.,[[.,[.,.]],[.,.]]]]
=> [4,3,6,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(6,10),(7,12),(8,11),(9,11),(10,12),(11,10)],13)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[.,[[[.,.],.],[.,.]]]]
=> [3,4,6,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,10),(5,12),(6,9),(6,11),(8,10),(9,8),(10,7),(11,8),(12,7),(13,9)],14)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> [5,4,3,6,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,13),(4,10),(5,11),(5,12),(6,9),(6,13),(8,10),(9,7),(10,9),(11,8),(12,8),(13,7)],14)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[.,[[.,[[.,.],.]],.]]]
=> [4,5,3,6,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(10,9),(11,10)],13)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[.,[[[.,.],[.,.]],.]]]
=> [3,5,4,6,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,12),(4,13),(5,13),(6,9),(6,12),(8,9),(9,7),(10,8),(11,8),(12,7),(13,10),(13,11)],14)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[.,[[[.,[.,.]],.],.]]]
=> [4,3,5,6,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,10),(5,12),(6,9),(6,11),(8,10),(9,8),(10,7),(11,8),(12,7),(13,9)],14)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[.,.],[.,[.,[.,.]]]]]
=> [2,6,5,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,13),(3,12),(4,7),(5,12),(5,14),(6,13),(6,14),(8,11),(9,8),(10,8),(11,7),(12,9),(13,10),(14,9),(14,10)],15)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[.,.],[.,[[.,.],.]]]]
=> [2,5,6,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,9),(5,11),(6,7),(6,10),(7,12),(8,10),(10,12),(11,9),(12,11)],13)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[.,.],[[.,.],[.,.]]]]
=> [2,4,6,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,10),(5,11),(6,8),(7,11),(9,10),(10,8),(11,9)],12)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[.,.],[[.,[.,.]],.]]]
=> [2,5,4,6,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,10),(5,11),(6,8),(7,11),(9,10),(10,8),(11,9)],12)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[.,[.,.]],[.,[.,.]]]]
=> [3,2,6,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[.,[.,.]],[[.,.],.]]]
=> [3,2,5,6,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,10),(3,7),(4,7),(5,8),(6,8),(7,11),(8,9),(9,11),(11,10)],12)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[[.,.],.],[.,[.,.]]]]
=> [2,3,6,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,13),(4,7),(5,10),(5,13),(6,11),(6,12),(8,10),(9,7),(10,9),(11,8),(12,8),(13,9)],14)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[.,[.,[.,.]]],[.,.]]]
=> [4,3,2,6,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[.,[[.,.],.]],[.,.]]]
=> [3,4,2,6,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,10),(3,7),(4,7),(5,8),(6,8),(7,11),(8,9),(9,11),(11,10)],12)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[[.,.],[.,.]],[.,.]]]
=> [2,4,3,6,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,10),(3,7),(4,7),(5,8),(6,8),(7,11),(8,9),(8,11),(9,12),(11,12),(12,10)],13)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[[.,[.,.]],.],[.,.]]]
=> [3,2,4,6,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,7),(5,9),(6,10),(6,11),(7,11),(8,10),(10,12),(11,12),(12,9)],13)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[.,[.,[.,[.,.]]]],.]]
=> [5,4,3,2,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,13),(3,12),(4,7),(5,12),(5,14),(6,13),(6,14),(8,11),(9,8),(10,8),(11,7),(12,9),(13,10),(14,9),(14,10)],15)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[.,[.,[[.,.],.]]],.]]
=> [4,5,3,2,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,9),(5,11),(6,7),(6,10),(7,12),(8,10),(10,12),(11,9),(12,11)],13)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[.,[[.,.],[.,.]]],.]]
=> [3,5,4,2,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,10),(5,11),(6,8),(7,11),(9,10),(10,8),(11,9)],12)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[.,[[.,[.,.]],.]],.]]
=> [4,3,5,2,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,10),(5,11),(6,8),(7,11),(9,10),(10,8),(11,9)],12)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[[.,.],[.,[.,.]]],.]]
=> [2,5,4,3,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,7),(6,11),(6,12),(8,7),(9,8),(10,8),(11,13),(12,13),(13,9),(13,10)],14)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[[.,[.,.]],[.,.]],.]]
=> [3,2,5,4,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,10),(3,7),(4,7),(5,8),(6,8),(7,11),(8,9),(8,11),(9,12),(11,12),(12,10)],13)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[[.,[.,[.,.]]],.],.]]
=> [4,3,2,5,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,13),(4,7),(5,10),(5,13),(6,11),(6,12),(8,10),(9,7),(10,9),(11,8),(12,8),(13,9)],14)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,.],[.,[.,[.,[.,.]]]]]
=> [1,6,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,.],[.,[.,[[.,.],.]]]]
=> [1,5,6,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,7),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,11),(14,8),(14,9)],15)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,.],[.,[[.,.],[.,.]]]]
=> [1,4,6,5,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,.],[.,[[.,[.,.]],.]]]
=> [1,5,4,6,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,.],[[.,.],[.,[.,.]]]]
=> [1,3,6,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,7),(3,7),(3,8),(4,10),(5,11),(6,9),(7,12),(8,12),(10,9),(11,10),(12,11)],13)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,.],[[.,[.,.]],[.,.]]]
=> [1,4,3,6,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,8),(5,7),(6,7),(7,11),(8,11),(9,10),(11,9)],12)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,.],[[.,[.,[.,.]]],.]]
=> [1,5,4,3,6,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,7),(3,7),(3,8),(4,10),(5,11),(6,9),(7,12),(8,12),(10,9),(11,10),(12,11)],13)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,[.,.]],[.,[.,[.,.]]]]
=> [2,1,6,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ([(0,1)],2)
=> ? = 0 + 1
[[.,[.,.]],[.,[[.,.],.]]]
=> [2,1,5,6,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,8),(3,8),(4,9),(5,9),(6,7),(6,10),(7,12),(8,11),(9,10),(10,12),(12,11)],13)
=> ([(0,1)],2)
=> ? = 0 + 1
[[.,[.,.]],[[.,.],[.,.]]]
=> [2,1,4,6,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,7),(4,7),(5,8),(6,8),(7,11),(8,9),(9,10),(10,11)],12)
=> ([(0,1)],2)
=> ? = 0 + 1
[[.,[.,.]],[[.,[.,.]],.]]
=> [2,1,5,4,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,7),(4,7),(5,8),(6,8),(7,11),(8,9),(9,10),(10,11)],12)
=> ([(0,1)],2)
=> ? = 0 + 1
[[[.,.],.],[.,[.,[.,.]]]]
=> [1,2,6,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,12),(4,11),(4,14),(5,12),(5,15),(6,13),(6,15),(8,11),(9,8),(10,8),(11,7),(12,9),(13,10),(14,7),(15,9),(15,10)],16)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,[.,[.,.]]],[.,[.,.]]]
=> [3,2,1,6,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,12),(5,12),(5,13),(6,10),(6,11),(8,7),(9,7),(10,8),(11,8),(12,9),(13,9)],14)
=> ([(0,1)],2)
=> ? = 1 + 1
[[.,[.,[.,.]]],[[.,.],.]]
=> [3,2,1,5,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,8),(3,7),(4,9),(5,9),(6,7),(6,8),(7,11),(8,11),(9,10),(10,12),(11,12)],13)
=> ([(0,1)],2)
=> ? = 0 + 1
[[.,[[.,.],.]],[.,[.,.]]]
=> [2,3,1,6,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,8),(3,7),(4,9),(5,9),(6,7),(6,8),(7,11),(8,11),(9,10),(10,12),(11,12)],13)
=> ([(0,1)],2)
=> ? = 0 + 1
[[[.,.],[.,.]],[.,[.,.]]]
=> [1,3,2,6,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[.,[.,.]],.],[.,[.,.]]]
=> [2,1,3,6,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,9),(5,10),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,10)],14)
=> ([(0,1)],2)
=> ? = 0 + 1
[[.,[.,[.,[.,.]]]],[.,.]]
=> [4,3,2,1,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ([(0,1)],2)
=> ? = 0 + 1
[[.,[.,[[.,.],.]]],[.,.]]
=> [3,4,2,1,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,8),(3,8),(4,9),(5,9),(6,7),(6,10),(7,12),(8,11),(9,10),(10,12),(12,11)],13)
=> ([(0,1)],2)
=> ? = 0 + 1
[[.,[[.,.],[.,.]]],[.,.]]
=> [2,4,3,1,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,7),(4,7),(5,8),(6,8),(7,11),(8,9),(9,10),(10,11)],12)
=> ([(0,1)],2)
=> ? = 0 + 1
[[.,[[.,[.,.]],.]],[.,.]]
=> [3,2,4,1,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,7),(4,7),(5,8),(6,8),(7,11),(8,9),(9,10),(10,11)],12)
=> ([(0,1)],2)
=> ? = 0 + 1
[[[.,.],[.,[.,.]]],[.,.]]
=> [1,4,3,2,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,9),(4,12),(5,12),(6,10),(6,11),(8,7),(9,7),(10,13),(11,13),(12,8),(13,8),(13,9)],14)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[.,[.,.]],[.,.]],[.,.]]
=> [2,1,4,3,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,7),(5,9),(6,9),(7,11),(8,10),(9,10),(9,11),(10,12),(11,12)],13)
=> ([(0,1)],2)
=> ? = 1 + 1
[[[.,[.,[.,.]]],.],[.,.]]
=> [3,2,1,4,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,9),(5,10),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,10)],14)
=> ([(0,1)],2)
=> ? = 0 + 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => ?
=> ?
=> ? = 0 + 1
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => ?
=> ?
=> ? = 1 + 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [5,7,6,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,15),(2,16),(3,16),(4,14),(5,15),(5,18),(6,13),(6,19),(7,18),(7,19),(9,11),(10,12),(11,8),(12,8),(13,10),(14,13),(15,9),(16,14),(17,11),(17,12),(18,9),(18,17),(19,10),(19,17)],20)
=> ?
=> ? = 1 + 1
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,15),(2,16),(3,16),(4,14),(5,15),(5,18),(6,13),(6,19),(7,18),(7,19),(9,11),(10,12),(11,8),(12,8),(13,10),(14,13),(15,9),(16,14),(17,11),(17,12),(18,9),(18,17),(19,10),(19,17)],20)
=> ?
=> ? = 1 + 1
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [5,6,7,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,17),(2,16),(3,15),(4,16),(4,17),(5,14),(5,19),(6,15),(6,20),(7,19),(7,20),(9,14),(10,12),(11,13),(12,8),(13,8),(14,10),(15,11),(16,9),(17,9),(18,12),(18,13),(19,10),(19,18),(20,11),(20,18)],21)
=> ?
=> ? = 0 + 1
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [4,7,6,5,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,13),(2,16),(3,15),(4,14),(5,15),(5,16),(6,12),(6,17),(7,14),(7,17),(9,13),(10,8),(11,8),(12,10),(13,12),(14,11),(15,9),(16,9),(17,10),(17,11)],18)
=> ?
=> ? = 1 + 1
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [4,6,7,5,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,13),(2,14),(3,15),(4,15),(5,12),(6,14),(6,16),(7,11),(7,16),(9,8),(10,8),(11,10),(12,13),(13,11),(14,9),(15,12),(16,9),(16,10)],17)
=> ?
=> ? = 0 + 1
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [5,4,7,6,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,15),(2,15),(3,14),(4,14),(5,13),(6,12),(6,16),(7,13),(7,16),(9,12),(10,8),(11,8),(12,10),(13,11),(14,9),(15,9),(16,10),(16,11)],17)
=> ?
=> ? = 0 + 1
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [4,5,7,6,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,16),(2,16),(3,14),(4,15),(5,13),(5,15),(6,12),(6,17),(7,14),(7,17),(9,12),(10,8),(11,8),(12,10),(13,9),(14,11),(15,9),(16,13),(17,10),(17,11)],18)
=> ?
=> ? = 0 + 1
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,13),(2,16),(3,15),(4,14),(5,15),(5,16),(6,12),(6,17),(7,14),(7,17),(9,13),(10,8),(11,8),(12,10),(13,12),(14,11),(15,9),(16,9),(17,10),(17,11)],18)
=> ?
=> ? = 1 + 1
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [5,6,4,7,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,13),(2,14),(3,15),(4,15),(5,12),(6,14),(6,16),(7,11),(7,16),(9,8),(10,8),(11,10),(12,13),(13,11),(14,9),(15,12),(16,9),(16,10)],17)
=> ?
=> ? = 0 + 1
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [4,6,5,7,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,15),(2,17),(3,17),(4,14),(5,13),(6,15),(6,16),(7,12),(7,16),(9,12),(10,8),(11,8),(12,11),(13,9),(14,9),(15,10),(16,10),(16,11),(17,13),(17,14)],18)
=> ?
=> ? = 0 + 1
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [5,4,6,7,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,16),(2,16),(3,14),(4,15),(5,13),(5,15),(6,12),(6,17),(7,14),(7,17),(9,12),(10,8),(11,8),(12,10),(13,9),(14,11),(15,9),(16,13),(17,10),(17,11)],18)
=> ?
=> ? = 0 + 1
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [4,5,6,7,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,16),(2,15),(3,17),(4,14),(4,19),(5,15),(5,18),(6,16),(6,18),(7,17),(7,19),(9,14),(10,9),(11,9),(12,8),(13,8),(14,12),(15,10),(16,11),(17,13),(18,10),(18,11),(19,12),(19,13)],20)
=> ?
=> ? = 0 + 1
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [3,7,6,5,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,16),(2,13),(3,15),(4,14),(5,12),(5,16),(6,14),(6,17),(7,15),(7,17),(9,13),(10,9),(11,9),(12,8),(13,12),(14,10),(15,11),(16,8),(17,10),(17,11)],18)
=> ?
=> ? = 1 + 1
[.,[.,[[.,.],[.,[[.,.],.]]]]]
=> [3,6,7,5,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,14),(2,12),(3,15),(4,15),(5,13),(6,11),(6,14),(7,10),(7,13),(9,12),(10,9),(11,8),(12,11),(13,9),(14,8),(15,10)],16)
=> ?
=> ? = 0 + 1
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [3,5,7,6,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(2,9),(3,8),(4,11),(5,12),(6,13),(7,8),(7,10),(8,14),(9,13),(10,14),(11,12),(12,10),(13,11)],15)
=> ?
=> ? = 0 + 1
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [3,6,5,7,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(2,9),(3,8),(4,11),(5,12),(6,13),(7,8),(7,10),(8,14),(9,13),(10,14),(11,12),(12,10),(13,11)],15)
=> ?
=> ? = 0 + 1
[.,[.,[[.,.],[[[.,.],.],.]]]]
=> [3,5,6,7,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,14),(2,13),(3,12),(4,15),(5,11),(6,13),(6,14),(7,10),(7,15),(9,12),(10,8),(11,10),(12,11),(13,9),(14,9),(15,8)],16)
=> ?
=> ? = 0 + 1
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [4,3,7,6,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,14),(2,15),(3,15),(4,13),(5,12),(6,11),(6,14),(7,12),(7,13),(9,11),(10,9),(11,8),(12,10),(13,10),(14,8),(15,9)],16)
=> ?
=> ? = 0 + 1
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [4,3,6,7,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,11),(2,8),(3,8),(4,9),(5,10),(6,10),(7,9),(7,12),(8,14),(9,13),(10,11),(11,14),(12,13),(14,12)],15)
=> ?
=> ? = 0 + 1
[.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [3,4,7,6,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,16),(2,15),(3,14),(4,13),(5,12),(5,16),(6,11),(6,13),(7,14),(7,15),(9,12),(10,11),(11,9),(12,8),(13,9),(14,10),(15,10),(16,8)],17)
=> ?
=> ? = 0 + 1
[.,[.,[[[.,.],.],[[.,.],.]]]]
=> [3,4,6,7,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,14),(2,12),(3,15),(4,15),(5,13),(6,11),(6,14),(7,10),(7,13),(9,11),(10,9),(11,8),(12,10),(13,9),(14,8),(15,12)],16)
=> ?
=> ? = 0 + 1
[.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [5,4,3,7,6,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,14),(2,15),(3,15),(4,13),(5,12),(6,11),(6,14),(7,12),(7,13),(9,11),(10,9),(11,8),(12,10),(13,10),(14,8),(15,9)],16)
=> ?
=> ? = 0 + 1
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [4,5,3,7,6,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,11),(2,8),(3,8),(4,9),(5,10),(6,10),(7,9),(7,12),(8,14),(9,13),(10,11),(11,14),(12,13),(14,12)],15)
=> ?
=> ? = 0 + 1
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [3,5,4,7,6,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,13),(2,14),(3,14),(4,12),(5,15),(6,15),(7,11),(7,13),(9,11),(10,9),(11,8),(12,9),(13,8),(14,10),(15,10),(15,12)],16)
=> ?
=> ? = 0 + 1
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [4,3,5,7,6,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,14),(2,14),(3,15),(4,15),(5,13),(6,10),(6,11),(7,12),(7,13),(9,12),(10,9),(11,9),(12,8),(13,8),(14,11),(15,10)],16)
=> ?
=> ? = 0 + 1
[.,[.,[[[[.,.],.],.],[.,.]]]]
=> [3,4,5,7,6,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,15),(2,16),(3,16),(4,14),(5,13),(5,15),(6,12),(6,17),(7,14),(7,17),(9,13),(10,9),(11,9),(12,10),(13,8),(14,11),(15,8),(16,12),(17,10),(17,11)],18)
=> ?
=> ? = 0 + 1
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [6,5,4,3,7,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,16),(2,13),(3,15),(4,14),(5,12),(5,16),(6,14),(6,17),(7,15),(7,17),(9,13),(10,9),(11,9),(12,8),(13,12),(14,10),(15,11),(16,8),(17,10),(17,11)],18)
=> ?
=> ? = 1 + 1
[.,[.,[[.,[.,[[.,.],.]]],.]]]
=> [5,6,4,3,7,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,14),(2,12),(3,15),(4,15),(5,13),(6,11),(6,14),(7,10),(7,13),(9,12),(10,9),(11,8),(12,11),(13,9),(14,8),(15,10)],16)
=> ?
=> ? = 0 + 1
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [4,6,5,3,7,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(2,9),(3,8),(4,11),(5,12),(6,13),(7,8),(7,10),(8,14),(9,13),(10,14),(11,12),(12,10),(13,11)],15)
=> ?
=> ? = 0 + 1
[.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [5,4,6,3,7,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(2,9),(3,8),(4,11),(5,12),(6,13),(7,8),(7,10),(8,14),(9,13),(10,14),(11,12),(12,10),(13,11)],15)
=> ?
=> ? = 0 + 1
[.,[.,[[.,[[[.,.],.],.]],.]]]
=> [4,5,6,3,7,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,14),(2,13),(3,12),(4,15),(5,11),(6,13),(6,14),(7,10),(7,15),(9,12),(10,8),(11,10),(12,11),(13,9),(14,9),(15,8)],16)
=> ?
=> ? = 0 + 1
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Matching statistic: St001725
Mp00010: Binary trees —to ordered tree: left child = left brother⟶ Ordered trees
Mp00046: Ordered trees —to graph⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001725: Graphs ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 25%
Mp00046: Ordered trees —to graph⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001725: Graphs ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 25%
Values
[.,[.,[.,[.,.]]]]
=> [[[[[]]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 0 + 4
[.,[.,[.,[.,[.,.]]]]]
=> [[[[[[]]]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 4 = 0 + 4
[.,[.,[.,[[.,.],.]]]]
=> [[[[[],[]]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 0 + 4
[.,[.,[[.,.],[.,.]]]]
=> [[[[],[[]]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4 = 0 + 4
[.,[.,[[.,[.,.]],.]]]
=> [[[[[]],[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4 = 0 + 4
[.,[[.,.],[.,[.,.]]]]
=> [[[],[[[]]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 0 + 4
[.,[[.,[.,.]],[.,.]]]
=> [[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4 = 0 + 4
[.,[[.,[.,[.,.]]],.]]
=> [[[[[]]],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 0 + 4
[[.,.],[.,[.,[.,.]]]]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 4 = 0 + 4
[[.,[.,.]],[.,[.,.]]]
=> [[[]],[[[]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 4 = 0 + 4
[[.,[.,[.,.]]],[.,.]]
=> [[[[]]],[[]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 4 = 0 + 4
[[.,[.,[.,[.,.]]]],.]
=> [[[[[]]]],[]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 4 = 0 + 4
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [[[[[[[]]]]]]]
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? = 1 + 4
[.,[.,[.,[.,[[.,.],.]]]]]
=> [[[[[[],[]]]]]]
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 4 = 0 + 4
[.,[.,[.,[[.,.],[.,.]]]]]
=> [[[[[],[[]]]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4 = 0 + 4
[.,[.,[.,[[.,[.,.]],.]]]]
=> [[[[[[]],[]]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4 = 0 + 4
[.,[.,[.,[[[.,.],.],.]]]]
=> [[[[[],[],[]]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 0 + 4
[.,[.,[[.,.],[.,[.,.]]]]]
=> [[[[],[[[]]]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4 = 0 + 4
[.,[.,[[.,.],[[.,.],.]]]]
=> [[[[],[[],[]]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4 = 0 + 4
[.,[.,[[.,[.,.]],[.,.]]]]
=> [[[[[]],[[]]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ? = 0 + 4
[.,[.,[[[.,.],.],[.,.]]]]
=> [[[[],[],[[]]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4 = 0 + 4
[.,[.,[[.,[.,[.,.]]],.]]]
=> [[[[[[]]],[]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4 = 0 + 4
[.,[.,[[.,[[.,.],.]],.]]]
=> [[[[[],[]],[]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4 = 0 + 4
[.,[.,[[[.,.],[.,.]],.]]]
=> [[[[],[[]],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4 = 0 + 4
[.,[.,[[[.,[.,.]],.],.]]]
=> [[[[[]],[],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4 = 0 + 4
[.,[[.,.],[.,[.,[.,.]]]]]
=> [[[],[[[[]]]]]]
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 4 = 0 + 4
[.,[[.,.],[.,[[.,.],.]]]]
=> [[[],[[[],[]]]]]
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 0 + 4
[.,[[.,.],[[.,.],[.,.]]]]
=> [[[],[[],[[]]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4 = 0 + 4
[.,[[.,.],[[.,[.,.]],.]]]
=> [[[],[[[]],[]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4 = 0 + 4
[.,[[.,[.,.]],[.,[.,.]]]]
=> [[[[]],[[[]]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4 = 0 + 4
[.,[[.,[.,.]],[[.,.],.]]]
=> [[[[]],[[],[]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4 = 0 + 4
[.,[[[.,.],.],[.,[.,.]]]]
=> [[[],[],[[[]]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 0 + 4
[.,[[.,[.,[.,.]]],[.,.]]]
=> [[[[[]]],[[]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4 = 0 + 4
[.,[[.,[[.,.],.]],[.,.]]]
=> [[[[],[]],[[]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4 = 0 + 4
[.,[[[.,.],[.,.]],[.,.]]]
=> [[[],[[]],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4 = 0 + 4
[.,[[[.,[.,.]],.],[.,.]]]
=> [[[[]],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4 = 0 + 4
[.,[[.,[.,[.,[.,.]]]],.]]
=> [[[[[[]]]],[]]]
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 4 = 0 + 4
[.,[[.,[.,[[.,.],.]]],.]]
=> [[[[[],[]]],[]]]
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 0 + 4
[.,[[.,[[.,.],[.,.]]],.]]
=> [[[[],[[]]],[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4 = 0 + 4
[.,[[.,[[.,[.,.]],.]],.]]
=> [[[[[]],[]],[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4 = 0 + 4
[.,[[[.,.],[.,[.,.]]],.]]
=> [[[],[[[]]],[]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 0 + 4
[.,[[[.,[.,.]],[.,.]],.]]
=> [[[[]],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4 = 0 + 4
[.,[[[.,[.,[.,.]]],.],.]]
=> [[[[[]]],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 0 + 4
[[.,.],[.,[.,[.,[.,.]]]]]
=> [[],[[[[[]]]]]]
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? = 0 + 4
[[.,.],[.,[.,[[.,.],.]]]]
=> [[],[[[[],[]]]]]
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 4 = 0 + 4
[[.,.],[.,[[.,.],[.,.]]]]
=> [[],[[[],[[]]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4 = 0 + 4
[[.,.],[.,[[.,[.,.]],.]]]
=> [[],[[[[]],[]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4 = 0 + 4
[[.,.],[[.,.],[.,[.,.]]]]
=> [[],[[],[[[]]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4 = 0 + 4
[[.,.],[[.,[.,.]],[.,.]]]
=> [[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ? = 0 + 4
[[.,.],[[.,[.,[.,.]]],.]]
=> [[],[[[[]]],[]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4 = 0 + 4
[[.,[.,.]],[.,[.,[.,.]]]]
=> [[[]],[[[[]]]]]
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? = 0 + 4
[[.,[.,.]],[.,[[.,.],.]]]
=> [[[]],[[[],[]]]]
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 4 = 0 + 4
[[.,[.,.]],[[.,.],[.,.]]]
=> [[[]],[[],[[]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4 = 0 + 4
[[.,[.,.]],[[.,[.,.]],.]]
=> [[[]],[[[]],[]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4 = 0 + 4
[[[.,.],.],[.,[.,[.,.]]]]
=> [[],[],[[[[]]]]]
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 4 = 0 + 4
[[.,[.,[.,.]]],[.,[.,.]]]
=> [[[[]]],[[[]]]]
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? = 1 + 4
[[.,[.,[.,[.,.]]]],[.,.]]
=> [[[[[]]]],[[]]]
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? = 0 + 4
[[[.,[.,.]],[.,.]],[.,.]]
=> [[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ? = 1 + 4
[[.,[.,[.,[.,[.,.]]]]],.]
=> [[[[[[]]]]],[]]
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? = 0 + 4
[[.,[[.,[.,.]],[.,.]]],.]
=> [[[[]],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ? = 0 + 4
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [[[[[[[[]]]]]]]]
=> ([(0,7),(1,6),(2,3),(2,4),(3,5),(4,6),(5,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [[[[[[[],[]]]]]]]
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? = 1 + 4
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [[[[[[],[[]]]]]]]
=> ([(0,6),(1,5),(2,7),(3,4),(3,5),(4,7),(6,7)],8)
=> ?
=> ? = 1 + 4
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [[[[[[[]],[]]]]]]
=> ([(0,6),(1,5),(2,7),(3,4),(3,5),(4,7),(6,7)],8)
=> ?
=> ? = 1 + 4
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [[[[[[],[],[]]]]]]
=> ([(0,7),(1,7),(2,7),(3,4),(4,6),(5,6),(5,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [[[[[],[[[]]]]]]]
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 1 + 4
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [[[[[],[[],[]]]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,5),(4,7),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [[[[[[]],[[]]]]]]
=> ([(0,6),(1,5),(2,4),(3,4),(3,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [[[[[],[],[[]]]]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [[[[[[[]]],[]]]]]
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 1 + 4
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [[[[[[],[]],[]]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,5),(4,7),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [[[[[],[[]],[]]]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [[[[[[]],[],[]]]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [[[[[],[],[],[]]]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [[[[],[[[[]]]]]]]
=> ([(0,6),(1,5),(2,7),(3,4),(3,5),(4,7),(6,7)],8)
=> ?
=> ? = 1 + 4
[.,[.,[[.,.],[.,[[.,.],.]]]]]
=> [[[[],[[[],[]]]]]]
=> ([(0,7),(1,6),(2,6),(3,4),(4,7),(5,6),(5,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [[[[],[[],[[]]]]]]
=> ([(0,7),(1,6),(2,4),(3,5),(4,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [[[[],[[[]],[]]]]]
=> ([(0,7),(1,6),(2,4),(3,5),(4,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[.,.],[[[.,.],.],.]]]]
=> [[[[],[[],[],[]]]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,6),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [[[[[]],[[[]]]]]]
=> ([(0,6),(1,5),(2,4),(3,4),(3,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [[[[[]],[[],[]]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [[[[],[],[[[]]]]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[[.,.],.],[[.,.],.]]]]
=> [[[[],[],[[],[]]]]]
=> ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [[[[[[]]],[[]]]]]
=> ([(0,6),(1,5),(2,4),(3,4),(3,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [[[[[],[]],[[]]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [[[[],[[]],[[]]]]]
=> ([(0,7),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [[[[[]],[],[[]]]]]
=> ([(0,7),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[[[.,.],.],.],[.,.]]]]
=> [[[[],[],[],[[]]]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [[[[[[[]]]],[]]]]
=> ([(0,6),(1,5),(2,7),(3,4),(3,5),(4,7),(6,7)],8)
=> ?
=> ? = 1 + 4
[.,[.,[[.,[.,[[.,.],.]]],.]]]
=> [[[[[[],[]]],[]]]]
=> ([(0,7),(1,6),(2,6),(3,4),(4,7),(5,6),(5,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [[[[[],[[]]],[]]]]
=> ([(0,7),(1,6),(2,4),(3,5),(4,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [[[[[[]],[]],[]]]]
=> ([(0,7),(1,6),(2,4),(3,5),(4,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[.,[[[.,.],.],.]],.]]]
=> [[[[[],[],[]],[]]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,6),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [[[[],[[[]]],[]]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[[.,.],[[.,.],.]],.]]]
=> [[[[],[[],[]],[]]]]
=> ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [[[[[]],[[]],[]]]]
=> ([(0,7),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> [[[[],[],[[]],[]]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[[.,[.,[.,.]]],.],.]]]
=> [[[[[[]]],[],[]]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[[.,[[.,.],.]],.],.]]]
=> [[[[[],[]],[],[]]]]
=> ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 4
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> [[[[],[[]],[],[]]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 4
Description
The harmonious chromatic number of a graph.
A harmonious colouring is a proper vertex colouring such that any pair of colours appears at most once on adjacent vertices.
The following 112 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000455The second largest eigenvalue of a graph if it is integral. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001301The first Betti number of the order complex associated with the poset. St001398Number of subsets of size 3 of elements in a poset that form a "v". St000640The rank of the largest boolean interval in a poset. St000908The length of the shortest maximal antichain in a poset. St000914The sum of the values of the Möbius function of a poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St001498The normalised height of a Nakayama algebra with magnitude 1. St000889The number of alternating sign matrices with the same antidiagonal sums. St000095The number of triangles of a graph. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000315The number of isolated vertices of a graph. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001690The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path. St001871The number of triconnected components of a graph. St000096The number of spanning trees of a graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000286The number of connected components of the complement of a graph. St000287The number of connected components of a graph. St000310The minimal degree of a vertex of a graph. St000450The number of edges minus the number of vertices plus 2 of a graph. St001518The number of graphs with the same ordinary spectrum as the given graph. St001828The Euler characteristic of a graph. St000822The Hadwiger number of the graph. St001060The distinguishing index of a graph. St001117The game chromatic index of a graph. St001734The lettericity of a graph. St001260The permanent of an alternating sign matrix. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000879The number of long braid edges in the graph of braid moves of a permutation. St001890The maximum magnitude of the Möbius function of a poset. St000327The number of cover relations in a poset. St001545The second Elser number of a connected graph. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St000811The sum of the entries in the column specified by the partition of the change of basis matrix from powersum symmetric functions to Schur symmetric functions. St000454The largest eigenvalue of a graph if it is integral. St001846The number of elements which do not have a complement in the lattice. St001613The binary logarithm of the size of the center of a lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St001616The number of neutral elements in a lattice. St001720The minimal length of a chain of small intervals in a lattice. St000124The cardinality of the preimage of the Simion-Schmidt map. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St000065The number of entries equal to -1 in an alternating sign matrix. St001434The number of negative sum pairs of a signed permutation. St001947The number of ties in a parking function. St000066The column of the unique '1' in the first row of the alternating sign matrix. St000787The number of flips required to make a perfect matching noncrossing. St000788The number of nesting-similar perfect matchings of a perfect matching. St000210Minimum over maximum difference of elements in cycles. St000406The number of occurrences of the pattern 3241 in a permutation. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000623The number of occurrences of the pattern 52341 in a permutation. St000799The number of occurrences of the vincular pattern |213 in a permutation. St000800The number of occurrences of the vincular pattern |231 in a permutation. St000801The number of occurrences of the vincular pattern |312 in a permutation. St000802The number of occurrences of the vincular pattern |321 in a permutation. St000962The 3-shifted major index of a permutation. St001381The fertility of a permutation. St001396Number of triples of incomparable elements in a finite poset. St001695The natural comajor index of a standard Young tableau. St001698The comajor index of a standard tableau minus the weighted size of its shape. St001699The major index of a standard tableau minus the weighted size of its shape. St001712The number of natural descents of a standard Young tableau. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001964The interval resolution global dimension of a poset. St000487The length of the shortest cycle of a permutation. St000501The size of the first part in the decomposition of a permutation. St000542The number of left-to-right-minima of a permutation. St000990The first ascent of a permutation. St001468The smallest fixpoint of a permutation. St001532The leading coefficient of the Poincare polynomial of the poset cone. St000422The energy of a graph, if it is integral. St000475The number of parts equal to 1 in a partition. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001256Number of simple reflexive modules that are 2-stable reflexive. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001873For a Nakayama algebra corresponding to a Dyck path, we define the matrix C with entries the Hom-spaces between $e_i J$ and $e_j J$ (the radical of the indecomposable projective modules). St000741The Colin de Verdière graph invariant. St001820The size of the image of the pop stack sorting operator. St000298The order dimension or Dushnik-Miller dimension of a poset. St000281The size of the preimage of the map 'to poset' from Binary trees to Posets. St000282The size of the preimage of the map 'to poset' from Ordered trees to Posets. St000717The number of ordinal summands of a poset. St000896The number of zeros on the main diagonal of an alternating sign matrix. St001344The neighbouring number of a permutation. St000297The number of leading ones in a binary word. St001537The number of cyclic crossings of a permutation. St001549The number of restricted non-inversions between exceedances. St001550The number of inversions between exceedances where the greater exceedance is linked. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked. St001771The number of occurrences of the signed pattern 1-2 in a signed permutation. St001870The number of positive entries followed by a negative entry in a signed permutation. St001895The oddness of a signed permutation. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St000255The number of reduced Kogan faces with the permutation as type. St001162The minimum jump of a permutation. St001084The number of occurrences of the vincular pattern |1-23 in a permutation. St001087The number of occurrences of the vincular pattern |12-3 in a permutation. St001465The number of adjacent transpositions in the cycle decomposition of a permutation. St001133The smallest label in the subtree rooted at the sister of 1 in the decreasing labelled binary unordered tree associated with the perfect matching. St000078The number of alternating sign matrices whose left key is the permutation. St001645The pebbling number of a connected graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!