searching the database
Your data matches 153 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001629
Mp00163: Signed permutations —permutation⟶ Permutations
Mp00248: Permutations —DEX composition⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
St001629: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00248: Permutations —DEX composition⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
St001629: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,4,3,2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[1,4,3,-2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[1,4,-3,2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[1,4,-3,-2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[1,-4,3,2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[1,-4,3,-2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[1,-4,-3,2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[1,-4,-3,-2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[-1,4,3,2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[-1,4,3,-2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[-1,4,-3,2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[-1,4,-3,-2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[-1,-4,3,2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[-1,-4,3,-2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[-1,-4,-3,2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[-1,-4,-3,-2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[4,3,2,1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[4,3,2,-1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[4,3,-2,1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[4,3,-2,-1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[4,-3,2,1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[4,-3,2,-1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[4,-3,-2,1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[4,-3,-2,-1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[-4,3,2,1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[-4,3,2,-1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[-4,3,-2,1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[-4,3,-2,-1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[-4,-3,2,1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[-4,-3,2,-1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[-4,-3,-2,1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[-4,-3,-2,-1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[1,2,5,4,3] => [1,2,5,4,3] => [2,2,1] => [2,1] => 0
[1,2,5,4,-3] => [1,2,5,4,3] => [2,2,1] => [2,1] => 0
[1,2,5,-4,3] => [1,2,5,4,3] => [2,2,1] => [2,1] => 0
[1,2,5,-4,-3] => [1,2,5,4,3] => [2,2,1] => [2,1] => 0
[1,2,-5,4,3] => [1,2,5,4,3] => [2,2,1] => [2,1] => 0
[1,2,-5,4,-3] => [1,2,5,4,3] => [2,2,1] => [2,1] => 0
[1,2,-5,-4,3] => [1,2,5,4,3] => [2,2,1] => [2,1] => 0
[1,2,-5,-4,-3] => [1,2,5,4,3] => [2,2,1] => [2,1] => 0
[1,-2,5,4,3] => [1,2,5,4,3] => [2,2,1] => [2,1] => 0
[1,-2,5,4,-3] => [1,2,5,4,3] => [2,2,1] => [2,1] => 0
[1,-2,5,-4,3] => [1,2,5,4,3] => [2,2,1] => [2,1] => 0
[1,-2,5,-4,-3] => [1,2,5,4,3] => [2,2,1] => [2,1] => 0
[1,-2,-5,4,3] => [1,2,5,4,3] => [2,2,1] => [2,1] => 0
[1,-2,-5,4,-3] => [1,2,5,4,3] => [2,2,1] => [2,1] => 0
[1,-2,-5,-4,3] => [1,2,5,4,3] => [2,2,1] => [2,1] => 0
[1,-2,-5,-4,-3] => [1,2,5,4,3] => [2,2,1] => [2,1] => 0
[-1,2,5,4,3] => [1,2,5,4,3] => [2,2,1] => [2,1] => 0
[-1,2,5,4,-3] => [1,2,5,4,3] => [2,2,1] => [2,1] => 0
Description
The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles.
Matching statistic: St001491
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00163: Signed permutations —permutation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00114: Permutations —connectivity set⟶ Binary words
St001491: Binary words ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 20%
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00114: Permutations —connectivity set⟶ Binary words
St001491: Binary words ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 20%
Values
[1,4,3,2] => [1,4,3,2] => [4,3,1,2] => 000 => ? = 1 + 1
[1,4,3,-2] => [1,4,3,2] => [4,3,1,2] => 000 => ? = 1 + 1
[1,4,-3,2] => [1,4,3,2] => [4,3,1,2] => 000 => ? = 1 + 1
[1,4,-3,-2] => [1,4,3,2] => [4,3,1,2] => 000 => ? = 1 + 1
[1,-4,3,2] => [1,4,3,2] => [4,3,1,2] => 000 => ? = 1 + 1
[1,-4,3,-2] => [1,4,3,2] => [4,3,1,2] => 000 => ? = 1 + 1
[1,-4,-3,2] => [1,4,3,2] => [4,3,1,2] => 000 => ? = 1 + 1
[1,-4,-3,-2] => [1,4,3,2] => [4,3,1,2] => 000 => ? = 1 + 1
[-1,4,3,2] => [1,4,3,2] => [4,3,1,2] => 000 => ? = 1 + 1
[-1,4,3,-2] => [1,4,3,2] => [4,3,1,2] => 000 => ? = 1 + 1
[-1,4,-3,2] => [1,4,3,2] => [4,3,1,2] => 000 => ? = 1 + 1
[-1,4,-3,-2] => [1,4,3,2] => [4,3,1,2] => 000 => ? = 1 + 1
[-1,-4,3,2] => [1,4,3,2] => [4,3,1,2] => 000 => ? = 1 + 1
[-1,-4,3,-2] => [1,4,3,2] => [4,3,1,2] => 000 => ? = 1 + 1
[-1,-4,-3,2] => [1,4,3,2] => [4,3,1,2] => 000 => ? = 1 + 1
[-1,-4,-3,-2] => [1,4,3,2] => [4,3,1,2] => 000 => ? = 1 + 1
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 000 => ? = 1 + 1
[4,3,2,-1] => [4,3,2,1] => [4,3,2,1] => 000 => ? = 1 + 1
[4,3,-2,1] => [4,3,2,1] => [4,3,2,1] => 000 => ? = 1 + 1
[4,3,-2,-1] => [4,3,2,1] => [4,3,2,1] => 000 => ? = 1 + 1
[4,-3,2,1] => [4,3,2,1] => [4,3,2,1] => 000 => ? = 1 + 1
[4,-3,2,-1] => [4,3,2,1] => [4,3,2,1] => 000 => ? = 1 + 1
[4,-3,-2,1] => [4,3,2,1] => [4,3,2,1] => 000 => ? = 1 + 1
[4,-3,-2,-1] => [4,3,2,1] => [4,3,2,1] => 000 => ? = 1 + 1
[-4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 000 => ? = 1 + 1
[-4,3,2,-1] => [4,3,2,1] => [4,3,2,1] => 000 => ? = 1 + 1
[-4,3,-2,1] => [4,3,2,1] => [4,3,2,1] => 000 => ? = 1 + 1
[-4,3,-2,-1] => [4,3,2,1] => [4,3,2,1] => 000 => ? = 1 + 1
[-4,-3,2,1] => [4,3,2,1] => [4,3,2,1] => 000 => ? = 1 + 1
[-4,-3,2,-1] => [4,3,2,1] => [4,3,2,1] => 000 => ? = 1 + 1
[-4,-3,-2,1] => [4,3,2,1] => [4,3,2,1] => 000 => ? = 1 + 1
[-4,-3,-2,-1] => [4,3,2,1] => [4,3,2,1] => 000 => ? = 1 + 1
[1,2,5,4,3] => [1,2,5,4,3] => [5,4,1,2,3] => 0000 => ? = 0 + 1
[1,2,5,4,-3] => [1,2,5,4,3] => [5,4,1,2,3] => 0000 => ? = 0 + 1
[1,2,5,-4,3] => [1,2,5,4,3] => [5,4,1,2,3] => 0000 => ? = 0 + 1
[1,2,5,-4,-3] => [1,2,5,4,3] => [5,4,1,2,3] => 0000 => ? = 0 + 1
[1,2,-5,4,3] => [1,2,5,4,3] => [5,4,1,2,3] => 0000 => ? = 0 + 1
[1,2,-5,4,-3] => [1,2,5,4,3] => [5,4,1,2,3] => 0000 => ? = 0 + 1
[1,2,-5,-4,3] => [1,2,5,4,3] => [5,4,1,2,3] => 0000 => ? = 0 + 1
[1,2,-5,-4,-3] => [1,2,5,4,3] => [5,4,1,2,3] => 0000 => ? = 0 + 1
[1,-2,5,4,3] => [1,2,5,4,3] => [5,4,1,2,3] => 0000 => ? = 0 + 1
[1,-2,5,4,-3] => [1,2,5,4,3] => [5,4,1,2,3] => 0000 => ? = 0 + 1
[1,-2,5,-4,3] => [1,2,5,4,3] => [5,4,1,2,3] => 0000 => ? = 0 + 1
[1,-2,5,-4,-3] => [1,2,5,4,3] => [5,4,1,2,3] => 0000 => ? = 0 + 1
[1,-2,-5,4,3] => [1,2,5,4,3] => [5,4,1,2,3] => 0000 => ? = 0 + 1
[1,-2,-5,4,-3] => [1,2,5,4,3] => [5,4,1,2,3] => 0000 => ? = 0 + 1
[1,-2,-5,-4,3] => [1,2,5,4,3] => [5,4,1,2,3] => 0000 => ? = 0 + 1
[1,-2,-5,-4,-3] => [1,2,5,4,3] => [5,4,1,2,3] => 0000 => ? = 0 + 1
[-1,2,5,4,3] => [1,2,5,4,3] => [5,4,1,2,3] => 0000 => ? = 0 + 1
[-1,2,5,4,-3] => [1,2,5,4,3] => [5,4,1,2,3] => 0000 => ? = 0 + 1
[1,4,3,2,5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[1,4,3,2,-5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[1,4,3,-2,5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[1,4,3,-2,-5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[1,4,-3,2,5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[1,4,-3,2,-5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[1,4,-3,-2,5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[1,4,-3,-2,-5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[1,-4,3,2,5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[1,-4,3,2,-5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[1,-4,3,-2,5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[1,-4,3,-2,-5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[1,-4,-3,2,5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[1,-4,-3,2,-5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[1,-4,-3,-2,5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[1,-4,-3,-2,-5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[-1,4,3,2,5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[-1,4,3,2,-5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[-1,4,3,-2,5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[-1,4,3,-2,-5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[-1,4,-3,2,5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[-1,4,-3,2,-5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[-1,4,-3,-2,5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[-1,4,-3,-2,-5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[-1,-4,3,2,5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[-1,-4,3,2,-5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[-1,-4,3,-2,5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[-1,-4,3,-2,-5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[-1,-4,-3,2,5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[-1,-4,-3,2,-5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[-1,-4,-3,-2,5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[-1,-4,-3,-2,-5] => [1,4,3,2,5] => [4,3,1,2,5] => 0001 => 1 = 0 + 1
[1,5,4,2,3] => [1,5,4,2,3] => [1,5,4,2,3] => 1000 => 1 = 0 + 1
[1,5,4,2,-3] => [1,5,4,2,3] => [1,5,4,2,3] => 1000 => 1 = 0 + 1
[1,5,4,-2,3] => [1,5,4,2,3] => [1,5,4,2,3] => 1000 => 1 = 0 + 1
[1,5,4,-2,-3] => [1,5,4,2,3] => [1,5,4,2,3] => 1000 => 1 = 0 + 1
[1,5,-4,2,3] => [1,5,4,2,3] => [1,5,4,2,3] => 1000 => 1 = 0 + 1
[1,5,-4,2,-3] => [1,5,4,2,3] => [1,5,4,2,3] => 1000 => 1 = 0 + 1
[1,5,-4,-2,3] => [1,5,4,2,3] => [1,5,4,2,3] => 1000 => 1 = 0 + 1
[1,5,-4,-2,-3] => [1,5,4,2,3] => [1,5,4,2,3] => 1000 => 1 = 0 + 1
[1,-5,4,2,3] => [1,5,4,2,3] => [1,5,4,2,3] => 1000 => 1 = 0 + 1
[1,-5,4,2,-3] => [1,5,4,2,3] => [1,5,4,2,3] => 1000 => 1 = 0 + 1
[1,-5,4,-2,3] => [1,5,4,2,3] => [1,5,4,2,3] => 1000 => 1 = 0 + 1
[1,-5,4,-2,-3] => [1,5,4,2,3] => [1,5,4,2,3] => 1000 => 1 = 0 + 1
[1,-5,-4,2,3] => [1,5,4,2,3] => [1,5,4,2,3] => 1000 => 1 = 0 + 1
[1,-5,-4,2,-3] => [1,5,4,2,3] => [1,5,4,2,3] => 1000 => 1 = 0 + 1
[1,-5,-4,-2,3] => [1,5,4,2,3] => [1,5,4,2,3] => 1000 => 1 = 0 + 1
[1,-5,-4,-2,-3] => [1,5,4,2,3] => [1,5,4,2,3] => 1000 => 1 = 0 + 1
[-1,5,4,2,3] => [1,5,4,2,3] => [1,5,4,2,3] => 1000 => 1 = 0 + 1
[-1,5,4,2,-3] => [1,5,4,2,3] => [1,5,4,2,3] => 1000 => 1 = 0 + 1
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset.
Let $A_n=K[x]/(x^n)$.
We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.
Matching statistic: St001624
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00163: Signed permutations —permutation⟶ Permutations
Mp00239: Permutations —Corteel⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001624: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 20%
Mp00239: Permutations —Corteel⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001624: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 20%
Values
[1,4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[1,4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[1,4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[1,4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[1,-4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[1,-4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[1,-4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[1,-4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,-4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,-4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,-4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,-4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[4,3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[4,3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[4,3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[4,3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[4,-3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[4,-3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[4,-3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[4,-3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,-3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,-3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,-3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,-3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,2,5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,2,5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,2,-5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,2,-5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,2,-5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,2,-5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,-5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,-5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,-5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,-5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[-1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[-1,2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[2,5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,-5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,-5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,-5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,-5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,-5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,-5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,-5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,-5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-3,1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-3,1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
Description
The breadth of a lattice.
The '''breadth''' of a lattice is the least integer $b$ such that any join $x_1\vee x_2\vee\cdots\vee x_n$, with $n > b$, can be expressed as a join over a proper subset of $\{x_1,x_2,\ldots,x_n\}$.
Matching statistic: St001630
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00163: Signed permutations —permutation⟶ Permutations
Mp00239: Permutations —Corteel⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001630: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 20%
Mp00239: Permutations —Corteel⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001630: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 20%
Values
[1,4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[1,4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[1,4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[1,4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[1,-4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[1,-4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[1,-4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[1,-4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,-4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,-4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,-4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,-4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[4,3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[4,3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[4,3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[4,3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[4,-3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[4,-3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[4,-3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[4,-3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,-3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,-3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,-3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,-3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,2,5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,2,5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,2,-5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,2,-5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,2,-5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,2,-5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,-5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,-5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,-5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,-5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[-1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[-1,2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[2,5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,-5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,-5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,-5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,-5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,-5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,-5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,-5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,-5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-3,1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-3,1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Matching statistic: St001878
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00163: Signed permutations —permutation⟶ Permutations
Mp00239: Permutations —Corteel⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 20%
Mp00239: Permutations —Corteel⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 20%
Values
[1,4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[1,4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[1,4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[1,4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[1,-4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[1,-4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[1,-4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[1,-4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,-4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,-4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,-4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[-1,-4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[4,3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[4,3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[4,3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[4,3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[4,-3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[4,-3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[4,-3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[4,-3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,-3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,-3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,-3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[-4,-3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,2,5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,2,5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,2,-5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,2,-5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,2,-5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,2,-5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,-5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,-5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,-5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,-2,-5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[-1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[-1,2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[2,5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,-5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-2,-5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,-5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,-5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,-5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,1,-5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,-5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,-5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,-5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[3,-1,-5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-3,1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[-3,1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Matching statistic: St001625
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00163: Signed permutations —permutation⟶ Permutations
Mp00239: Permutations —Corteel⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001625: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 20%
Mp00239: Permutations —Corteel⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001625: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 20%
Values
[1,4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 4
[1,4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 4
[1,4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 4
[1,4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 4
[1,-4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 4
[1,-4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 4
[1,-4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 4
[1,-4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 4
[-1,4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 4
[-1,4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 4
[-1,4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 4
[-1,4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 4
[-1,-4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 4
[-1,-4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 4
[-1,-4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 4
[-1,-4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 4
[4,3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 4
[4,3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 4
[4,3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 4
[4,3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 4
[4,-3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 4
[4,-3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 4
[4,-3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 4
[4,-3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 4
[-4,3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 4
[-4,3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 4
[-4,3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 4
[-4,3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 4
[-4,-3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 4
[-4,-3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 4
[-4,-3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 4
[-4,-3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 4
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 4
[1,2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 4
[1,2,5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 4
[1,2,5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 4
[1,2,-5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 4
[1,2,-5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 4
[1,2,-5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 4
[1,2,-5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 4
[1,-2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 4
[1,-2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 4
[1,-2,5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 4
[1,-2,5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 4
[1,-2,-5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 4
[1,-2,-5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 4
[1,-2,-5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 4
[1,-2,-5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 4
[-1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 4
[-1,2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 4
[2,5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[2,5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[2,5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[2,5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[2,5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[2,5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[2,5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[2,5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[2,-5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[2,-5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[2,-5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[2,-5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[2,-5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[2,-5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[2,-5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[2,-5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[-2,5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[-2,5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[-2,5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[-2,5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[-2,5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[-2,5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[-2,5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[-2,5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[-2,-5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[-2,-5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[-2,-5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[-2,-5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[-2,-5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[-2,-5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[-2,-5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[-2,-5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[3,1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[3,1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[3,1,5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[3,1,5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[3,1,-5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[3,1,-5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[3,1,-5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[3,1,-5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[3,-1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[3,-1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[3,-1,5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[3,-1,5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[3,-1,-5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[3,-1,-5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[3,-1,-5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[3,-1,-5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[-3,1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
[-3,1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 0 + 4
Description
The Möbius invariant of a lattice.
The '''Möbius invariant''' of a lattice $L$ is the value of the Möbius function applied to least and greatest element, that is $\mu(L)=\mu_L(\hat{0},\hat{1})$, where $\hat{0}$ is the least element of $L$ and $\hat{1}$ is the greatest element of $L$.
For the definition of the Möbius function, see [[St000914]].
Matching statistic: St001621
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00163: Signed permutations —permutation⟶ Permutations
Mp00239: Permutations —Corteel⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001621: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 20%
Mp00239: Permutations —Corteel⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001621: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 20%
Values
[1,4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[1,4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[1,4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[1,4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[1,-4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[1,-4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[1,-4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[1,-4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,-4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,-4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,-4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,-4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[4,3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[4,3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[4,3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[4,3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[4,-3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[4,-3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[4,-3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[4,-3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,-3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,-3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,-3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,-3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,2,5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,2,5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,2,-5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,2,-5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,2,-5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,2,-5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,-5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,-5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,-5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,-5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[-1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[-1,2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[2,5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,-5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,-5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,-5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,-5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,-5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,-5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,-5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,-5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-3,1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-3,1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
Description
The number of atoms of a lattice.
An element of a lattice is an '''atom''' if it covers the least element.
Matching statistic: St001623
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00163: Signed permutations —permutation⟶ Permutations
Mp00239: Permutations —Corteel⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001623: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 20%
Mp00239: Permutations —Corteel⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001623: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 20%
Values
[1,4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[1,4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[1,4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[1,4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[1,-4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[1,-4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[1,-4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[1,-4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,-4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,-4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,-4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,-4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[4,3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[4,3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[4,3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[4,3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[4,-3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[4,-3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[4,-3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[4,-3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,-3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,-3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,-3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,-3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,2,5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,2,5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,2,-5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,2,-5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,2,-5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,2,-5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,-5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,-5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,-5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,-5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[-1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[-1,2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[2,5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,-5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,-5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,-5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,-5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,-5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,-5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,-5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,-5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-3,1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-3,1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
Description
The number of doubly irreducible elements of a lattice.
An element $d$ of a lattice $L$ is '''doubly irreducible''' if it is both join and meet irreducible. That means, $d$ is neither the least nor the greatest element of $L$ and if $d=x\vee y$ or $d=x\wedge y$, then $d\in\{x,y\}$ for all $x,y\in L$.
In a finite lattice, the doubly irreducible elements are those which cover and are covered by a unique element.
Matching statistic: St001626
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00163: Signed permutations —permutation⟶ Permutations
Mp00239: Permutations —Corteel⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001626: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 20%
Mp00239: Permutations —Corteel⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001626: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 20%
Values
[1,4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[1,4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[1,4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[1,4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[1,-4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[1,-4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[1,-4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[1,-4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,-4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,-4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,-4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[-1,-4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 5
[4,3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[4,3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[4,3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[4,3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[4,-3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[4,-3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[4,-3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[4,-3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,-3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,-3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,-3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[-4,-3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 5
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,2,5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,2,5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,2,-5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,2,-5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,2,-5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,2,-5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,-5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,-5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,-5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[1,-2,-5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[-1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[-1,2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 5
[2,5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[2,-5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-2,-5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,-5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,-5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,-5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,1,-5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,-5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,-5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,-5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[3,-1,-5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-3,1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
[-3,1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 0 + 5
Description
The number of maximal proper sublattices of a lattice.
Matching statistic: St001875
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00163: Signed permutations —permutation⟶ Permutations
Mp00239: Permutations —Corteel⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001875: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 20%
Mp00239: Permutations —Corteel⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001875: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 20%
Values
[1,4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 6
[1,4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 6
[1,4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 6
[1,4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 6
[1,-4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 6
[1,-4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 6
[1,-4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 6
[1,-4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 6
[-1,4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 6
[-1,4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 6
[-1,4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 6
[-1,4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 6
[-1,-4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 6
[-1,-4,3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 6
[-1,-4,-3,2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 6
[-1,-4,-3,-2] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 6
[4,3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 6
[4,3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 6
[4,3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 6
[4,3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 6
[4,-3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 6
[4,-3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 6
[4,-3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 6
[4,-3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 6
[-4,3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 6
[-4,3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 6
[-4,3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 6
[-4,3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 6
[-4,-3,2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 6
[-4,-3,2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 6
[-4,-3,-2,1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 6
[-4,-3,-2,-1] => [4,3,2,1] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 6
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 6
[1,2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 6
[1,2,5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 6
[1,2,5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 6
[1,2,-5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 6
[1,2,-5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 6
[1,2,-5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 6
[1,2,-5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 6
[1,-2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 6
[1,-2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 6
[1,-2,5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 6
[1,-2,5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 6
[1,-2,-5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 6
[1,-2,-5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 6
[1,-2,-5,-4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 6
[1,-2,-5,-4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 6
[-1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 6
[-1,2,5,4,-3] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 6
[2,5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[2,5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[2,5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[2,5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[2,5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[2,5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[2,5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[2,5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[2,-5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[2,-5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[2,-5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[2,-5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[2,-5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[2,-5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[2,-5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[2,-5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[-2,5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[-2,5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[-2,5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[-2,5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[-2,5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[-2,5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[-2,5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[-2,5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[-2,-5,4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[-2,-5,4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[-2,-5,4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[-2,-5,4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[-2,-5,-4,3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[-2,-5,-4,3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[-2,-5,-4,-3,1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[-2,-5,-4,-3,-1] => [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[3,1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[3,1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[3,1,5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[3,1,5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[3,1,-5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[3,1,-5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[3,1,-5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[3,1,-5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[3,-1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[3,-1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[3,-1,5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[3,-1,5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[3,-1,-5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[3,-1,-5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[3,-1,-5,-4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[3,-1,-5,-4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[-3,1,5,4,2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
[-3,1,5,4,-2] => [3,1,5,4,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 0 + 6
Description
The number of simple modules with projective dimension at most 1.
The following 143 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001877Number of indecomposable injective modules with projective dimension 2. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice. St001862The number of crossings of a signed permutation. St000298The order dimension or Dushnik-Miller dimension of a poset. St000640The rank of the largest boolean interval in a poset. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000633The size of the automorphism group of a poset. St000908The length of the shortest maximal antichain in a poset. St000914The sum of the values of the Möbius function of a poset. St001399The distinguishing number of a poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St000850The number of 1/2-balanced pairs in a poset. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St001771The number of occurrences of the signed pattern 1-2 in a signed permutation. St001868The number of alignments of type NE of a signed permutation. St001870The number of positive entries followed by a negative entry in a signed permutation. St001895The oddness of a signed permutation. St001896The number of right descents of a signed permutations. St001472The permanent of the Coxeter matrix of the poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St000181The number of connected components of the Hasse diagram for the poset. St000635The number of strictly order preserving maps of a poset into itself. St001890The maximum magnitude of the Möbius function of a poset. St001964The interval resolution global dimension of a poset. St001330The hat guessing number of a graph. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001860The number of factors of the Stanley symmetric function associated with a signed permutation. St000188The area of the Dyck path corresponding to a parking function and the total displacement of a parking function. St000195The number of secondary dinversion pairs of the dyck path corresponding to a parking function. St000943The number of spots the most unlucky car had to go further in a parking function. St001822The number of alignments of a signed permutation. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St000135The number of lucky cars of the parking function. St001927Sparre Andersen's number of positives of a signed permutation. St000540The sum of the entries of a parking function minus its length. St001171The vector space dimension of $Ext_A^1(I_o,A)$ when $I_o$ is the tilting module corresponding to the permutation $o$ in the Auslander algebra $A$ of $K[x]/(x^n)$. St000165The sum of the entries of a parking function. St001168The vector space dimension of the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St000068The number of minimal elements in a poset. St000911The number of maximal antichains of maximal size in a poset. St000942The number of critical left to right maxima of the parking functions. St001095The number of non-isomorphic posets with precisely one further covering relation. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001414Half the length of the longest odd length palindromic prefix of a binary word. St001490The number of connected components of a skew partition. St001556The number of inversions of the third entry of a permutation. St001768The number of reduced words of a signed permutation. St001773The number of minimal elements in Bruhat order not less than the signed permutation. St001823The Stasinski-Voll length of a signed permutation. St001863The number of weak excedances of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001884The number of borders of a binary word. St001903The number of fixed points of a parking function. St001904The length of the initial strictly increasing segment of a parking function. St001905The number of preferred parking spots in a parking function less than the index of the car. St001935The number of ascents in a parking function. St001937The size of the center of a parking function. St001946The number of descents in a parking function. St000281The size of the preimage of the map 'to poset' from Binary trees to Posets. St000282The size of the preimage of the map 'to poset' from Ordered trees to Posets. St000295The length of the border of a binary word. St000632The jump number of the poset. St000642The size of the smallest orbit of antichains under Panyushev complementation. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000907The number of maximal antichains of minimal length in a poset. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001371The length of the longest Yamanouchi prefix of a binary word. St001423The number of distinct cubes in a binary word. St001510The number of self-evacuating linear extensions of a finite poset. St001534The alternating sum of the coefficients of the Poincare polynomial of the poset cone. St001730The number of times the path corresponding to a binary word crosses the base line. St001821The sorting index of a signed permutation. St001851The number of Hecke atoms of a signed permutation. St001867The number of alignments of type EN of a signed permutation. St001889The size of the connectivity set of a signed permutation. St000717The number of ordinal summands of a poset. St001635The trace of the square of the Coxeter matrix of the incidence algebra of a poset. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St001926Sparre Andersen's position of the maximum of a signed permutation. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St000186The sum of the first row in a Gelfand-Tsetlin pattern. St000528The height of a poset. St000744The length of the path to the largest entry in a standard Young tableau. St000849The number of 1/3-balanced pairs in a poset. St000906The length of the shortest maximal chain in a poset. St001209The pmaj statistic of a parking function. St000044The number of vertices of the unicellular map given by a perfect matching. St000327The number of cover relations in a poset. St000643The size of the largest orbit of antichains under Panyushev complementation. St000680The Grundy value for Hackendot on posets. St000909The number of maximal chains of maximal size in a poset. St000910The number of maximal chains of minimal length in a poset. St000912The number of maximal antichains in a poset. St001268The size of the largest ordinal summand in the poset. St001397Number of pairs of incomparable elements in a finite poset. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St001861The number of Bruhat lower covers of a permutation. St000017The number of inversions of a standard tableau. St000526The number of posets with combinatorially isomorphic order polytopes. St000735The last entry on the main diagonal of a standard tableau. St001300The rank of the boundary operator in degree 1 of the chain complex of the order complex of the poset. St001343The dimension of the reduced incidence algebra of a poset. St001433The flag major index of a signed permutation. St001434The number of negative sum pairs of a signed permutation. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001645The pebbling number of a connected graph. St001718The number of non-empty open intervals in a poset. St001894The depth of a signed permutation. St001902The number of potential covers of a poset. St000848The balance constant multiplied with the number of linear extensions of a poset. St001398Number of subsets of size 3 of elements in a poset that form a "v". St001717The largest size of an interval in a poset. St001721The degree of a binary word. St001854The size of the left Kazhdan-Lusztig cell, St000524The number of posets with the same order polynomial. St000525The number of posets with the same zeta polynomial. St000543The size of the conjugacy class of a binary word. St000626The minimal period of a binary word. St000656The number of cuts of a poset. St001819The flag Denert index of a signed permutation. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001782The order of rowmotion on the set of order ideals of a poset. St001858The number of covering elements of a signed permutation in absolute order. St000070The number of antichains in a poset. St001779The order of promotion on the set of linear extensions of a poset. St000016The number of attacking pairs of a standard tableau. St000641The number of non-empty boolean intervals in a poset. St000639The number of relations in a poset. St000958The number of Bruhat factorizations of a permutation. St001853The size of the two-sided Kazhdan-Lusztig cell, St001664The number of non-isomorphic subposets of a poset. St001885The number of binary words with the same proper border set. St001709The number of homomorphisms to the three element chain of a poset. St001815The number of order preserving surjections from a poset to a total order. St001813The product of the sizes of the principal order filters in a poset.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!