Your data matches 317 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000012: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1,0,0]
=> 1
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 3
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> 3
[1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> 3
[1,1,1,0,0,0,1,0]
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> 4
[1,1,1,0,0,0,1,0,1,0]
=> 3
[1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,0,1,0,0]
=> 4
[1,0,1,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> 2
Description
The area of a Dyck path. This is the number of complete squares in the integer lattice which are below the path and above the x-axis. The 'half-squares' directly above the axis do not contribute to this statistic. 1. Dyck paths are bijection with '''area sequences''' $(a_1,\ldots,a_n)$ such that $a_1 = 0, a_{k+1} \leq a_k + 1$. 2. The generating function $\mathbf{D}_n(q) = \sum_{D \in \mathfrak{D}_n} q^{\operatorname{area}(D)}$ satisfy the recurrence $$\mathbf{D}_{n+1}(q) = \sum q^k \mathbf{D}_k(q) \mathbf{D}_{n-k}(q).$$ 3. The area is equidistributed with [[St000005]] and [[St000006]]. Pairs of these statistics play an important role in the theory of $q,t$-Catalan numbers.
St000984: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1,0,0]
=> 1
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 3
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> 3
[1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> 3
[1,1,1,0,0,0,1,0]
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> 4
[1,1,1,0,0,0,1,0,1,0]
=> 3
[1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,0,1,0,0]
=> 4
[1,0,1,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> 2
Description
The number of boxes below precisely one peak. Imagine that each peak of the Dyck path, drawn with north and east steps, casts a shadow onto the triangular region between it and the diagonal. This statistic is the number of cells which are in the shade of precisely one peak.
St001295: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1,0,0]
=> 1
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 3
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> 3
[1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> 3
[1,1,1,0,0,0,1,0]
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> 4
[1,1,1,0,0,0,1,0,1,0]
=> 3
[1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,0,1,0,0]
=> 4
[1,0,1,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> 2
Description
Gives the vector space dimension of the homomorphism space between J^2 and J^2.
Mp00030: Dyck paths zeta mapDyck paths
St000005: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1,0,0]
=> [1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 3
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 2
Description
The bounce statistic of a Dyck path. The '''bounce path''' $D'$ of a Dyck path $D$ is the Dyck path obtained from $D$ by starting at the end point $(2n,0)$, traveling north-west until hitting $D$, then bouncing back south-west to the $x$-axis, and repeating this procedure until finally reaching the point $(0,0)$. The points where $D'$ touches the $x$-axis are called '''bounce points''', and a bounce path is uniquely determined by its bounce points. This statistic is given by the sum of all $i$ for which the bounce path $D'$ of $D$ touches the $x$-axis at $(2i,0)$. In particular, the bounce statistics of $D$ and $D'$ coincide.
Mp00032: Dyck paths inverse zeta mapDyck paths
St000006: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1,0,0]
=> [1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 3
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 3
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 2
Description
The dinv of a Dyck path. Let $a=(a_1,\ldots,a_n)$ be the area sequence of a Dyck path $D$ (see [[St000012]]). The dinv statistic of $D$ is $$ \operatorname{dinv}(D) = \# \big\{ i < j : a_i-a_j \in \{ 0,1 \} \big\}.$$ Equivalently, $\operatorname{dinv}(D)$ is also equal to the number of boxes in the partition above $D$ whose ''arm length'' is one larger or equal to its ''leg length''. There is a recursive definition of the $(\operatorname{area},\operatorname{dinv})$ pair of statistics, see [2]. Let $a=(0,a_2,\ldots,a_r,0,a_{r+2},\ldots,a_n)$ be the area sequence of the Dyck path $D$ with $a_i > 0$ for $2\leq i\leq r$ (so that the path touches the diagonal for the first time after $r$ steps). Assume that $D$ has $v$ entries where $a_i=0$. Let $D'$ be the path with the area sequence $(0,a_{r+2},\ldots,a_n,a_2-1,a_3-1,\ldots,a_r-1)$, then the statistics are related by $$(\operatorname{area}(D),\operatorname{dinv}(D)) = (\operatorname{area}(D')+r-1,\operatorname{dinv}(D')+v-1).$$
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St000018: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1,0,0]
=> [2,1] => 1
[1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => 2
[1,1,1,0,0,0]
=> [3,2,1] => 3
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 3
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 3
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 3
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 4
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 3
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,4,3,6] => 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,4,2,5,6] => 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,2,6] => 3
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => 4
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,3,2,5,6] => 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,5,6] => 2
Description
The number of inversions of a permutation. This equals the minimal number of simple transpositions $(i,i+1)$ needed to write $\pi$. Thus, it is also the Coxeter length of $\pi$.
Mp00146: Dyck paths to tunnel matchingPerfect matchings
St000041: Perfect matchings ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1,0,0]
=> [(1,4),(2,3)]
=> 1
[1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> 2
[1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> 3
[1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> 1
[1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> 2
[1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> 3
[1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> 1
[1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> 2
[1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> 2
[1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> 3
[1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> 4
[1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> 3
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)]
=> 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)]
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)]
=> 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)]
=> 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)]
=> 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)]
=> 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9),(11,12)]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10),(11,12)]
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9),(11,12)]
=> 3
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)]
=> 4
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10),(11,12)]
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12)]
=> 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,12),(10,11)]
=> 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9),(11,12)]
=> 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10),(11,12)]
=> 2
Description
The number of nestings of a perfect matching. This is the number of pairs of edges $((a,b), (c,d))$ such that $a\le c\le d\le b$. i.e., the edge $(c,d)$ is nested inside $(a,b)$.
Mp00033: Dyck paths to two-row standard tableauStandard tableaux
St000057: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1,0,0]
=> [[1,2],[3,4]]
=> 1
[1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> 1
[1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> 1
[1,1,0,1,0,0]
=> [[1,2,4],[3,5,6]]
=> 2
[1,1,1,0,0,0]
=> [[1,2,3],[4,5,6]]
=> 3
[1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 1
[1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> 1
[1,0,1,1,0,1,0,0]
=> [[1,3,4,6],[2,5,7,8]]
=> 2
[1,0,1,1,1,0,0,0]
=> [[1,3,4,5],[2,6,7,8]]
=> 3
[1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> 1
[1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> 2
[1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> 2
[1,1,0,1,0,1,0,0]
=> [[1,2,4,6],[3,5,7,8]]
=> 3
[1,1,1,0,0,0,1,0]
=> [[1,2,3,7],[4,5,6,8]]
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> [[1,3,5,7,8],[2,4,6,9,10]]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,3,5,6,9],[2,4,7,8,10]]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [[1,3,5,6,8],[2,4,7,9,10]]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [[1,3,5,6,7],[2,4,8,9,10]]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [[1,3,4,7,9],[2,5,6,8,10]]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [[1,3,4,7,8],[2,5,6,9,10]]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [[1,3,4,6,9],[2,5,7,8,10]]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [[1,3,4,6,8],[2,5,7,9,10]]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [[1,3,4,5,9],[2,6,7,8,10]]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [[1,2,5,7,9],[3,4,6,8,10]]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [[1,2,5,7,8],[3,4,6,9,10]]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [[1,2,5,6,9],[3,4,7,8,10]]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [[1,2,4,7,9],[3,5,6,8,10]]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [[1,2,4,6,9],[3,5,7,8,10]]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [[1,2,4,6,8],[3,5,7,9,10]]
=> 4
[1,1,1,0,0,0,1,0,1,0]
=> [[1,2,3,7,9],[4,5,6,8,10]]
=> 3
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [[1,3,5,7,9,10],[2,4,6,8,11,12]]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[1,3,5,7,8,11],[2,4,6,9,10,12]]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [[1,3,5,7,8,10],[2,4,6,9,11,12]]
=> 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [[1,3,5,7,8,9],[2,4,6,10,11,12]]
=> 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[1,3,5,6,9,11],[2,4,7,8,10,12]]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [[1,3,5,6,9,10],[2,4,7,8,11,12]]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[1,3,5,6,8,11],[2,4,7,9,10,12]]
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [[1,3,5,6,8,10],[2,4,7,9,11,12]]
=> 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [[1,3,5,6,7,11],[2,4,8,9,10,12]]
=> 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[1,3,4,7,9,11],[2,5,6,8,10,12]]
=> 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[1,3,4,7,9,10],[2,5,6,8,11,12]]
=> 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[1,3,4,7,8,11],[2,5,6,9,10,12]]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[1,3,4,6,9,11],[2,5,7,8,10,12]]
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[1,3,4,6,8,11],[2,5,7,9,10,12]]
=> 3
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [[1,3,4,6,8,10],[2,5,7,9,11,12]]
=> 4
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [[1,3,4,5,9,11],[2,6,7,8,10,12]]
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [[1,2,5,7,9,11],[3,4,6,8,10,12]]
=> 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [[1,2,5,7,9,10],[3,4,6,8,11,12]]
=> 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [[1,2,5,7,8,11],[3,4,6,9,10,12]]
=> 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [[1,2,5,6,9,11],[3,4,7,8,10,12]]
=> 2
Description
The Shynar inversion number of a standard tableau. Shynar's inversion number is the number of inversion pairs in a standard Young tableau, where an inversion pair is defined as a pair of integers (x,y) such that y > x and y appears strictly southwest of x in the tableau.
Mp00137: Dyck paths to symmetric ASMAlternating sign matrices
St000067: Alternating sign matrices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1,0,0]
=> [[0,1],[1,0]]
=> 1
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> 1
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> 1
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> 2
[1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> 3
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 1
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> 1
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> 2
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> 3
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> 1
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> 2
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> 2
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> 3
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 4
[1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 3
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> 3
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 4
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> 2
Description
The inversion number of the alternating sign matrix. If we denote the entries of the alternating sign matrix as $a_{i,j}$, the inversion number is defined as $$\sum_{i > k}\sum_{j < \ell} a_{i,j}a_{k,\ell}.$$ When restricted to permutation matrices, this gives the usual inversion number of the permutation.
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
St000076: Alternating sign matrices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1,0,0]
=> [[0,1],[1,0]]
=> 1
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> 1
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> 1
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> 2
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> 3
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 1
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> 1
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> 2
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> 3
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> 1
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> 2
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> 2
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> 3
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 4
[1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 3
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> 3
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 4
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> 2
Description
The rank of the alternating sign matrix in the alternating sign matrix poset. This rank is the sum of the entries of the monotone triangle minus $\binom{n+2}{3}$, which is the smallest sum of the entries in the set of all monotone triangles with bottom row $1\dots n$. Alternatively, $rank(A)=\frac{1}{2} \sum_{i,j=1}^n (i-j)^2 a_{ij}$, see [3, thm.5.1].
The following 307 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000161The sum of the sizes of the right subtrees of a binary tree. St000224The sorting index of a permutation. St000246The number of non-inversions of a permutation. St001397Number of pairs of incomparable elements in a finite poset. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001558The number of transpositions that are smaller or equal to a permutation in Bruhat order. St000004The major index of a permutation. St000042The number of crossings of a perfect matching. St000081The number of edges of a graph. St000233The number of nestings of a set partition. St000238The number of indices that are not small weak excedances. St000332The positive inversions of an alternating sign matrix. St000378The diagonal inversion number of an integer partition. St000496The rcs statistic of a set partition. St000795The mad of a permutation. St000874The position of the last double rise in a Dyck path. St000947The major index east count of a Dyck path. St001161The major index north count of a Dyck path. St001428The number of B-inversions of a signed permutation. St001718The number of non-empty open intervals in a poset. St000086The number of subgraphs. St001809The index of the step at the first peak of maximal height in a Dyck path. St000008The major index of the composition. St000010The length of the partition. St000025The number of initial rises of a Dyck path. St000061The number of nodes on the left branch of a binary tree. St000080The rank of the poset. St000156The Denert index of a permutation. St000305The inverse major index of a permutation. St000330The (standard) major index of a standard tableau. St000391The sum of the positions of the ones in a binary word. St000446The disorder of a permutation. St000448The number of pairs of vertices of a graph with distance 2. St000492The rob statistic of a set partition. St000495The number of inversions of distance at most 2 of a permutation. St000499The rcb statistic of a set partition. St000579The number of occurrences of the pattern {{1},{2}} such that 2 is a maximal element. St000740The last entry of a permutation. St000796The stat' of a permutation. St000798The makl of a permutation. St000803The number of occurrences of the vincular pattern |132 in a permutation. St000833The comajor index of a permutation. St001076The minimal length of a factorization of a permutation into transpositions that are cyclic shifts of (12). St001077The prefix exchange distance of a permutation. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001311The cyclomatic number of a graph. St001579The number of cyclically simple transpositions decreasing the number of cyclic descents needed to sort a permutation. St001637The number of (upper) dissectors of a poset. St001646The number of edges that can be added without increasing the maximal degree of a graph. St001668The number of points of the poset minus the width of the poset. St001671Haglund's hag of a permutation. St000439The position of the first down step of a Dyck path. St000528The height of a poset. St000680The Grundy value for Hackendot on posets. St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St000912The number of maximal antichains in a poset. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001343The dimension of the reduced incidence algebra of a poset. St001379The number of inversions plus the major index of a permutation. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St001814The number of partitions interlacing the given partition. St000643The size of the largest orbit of antichains under Panyushev complementation. St001782The order of rowmotion on the set of order ideals of a poset. St000437The number of occurrences of the pattern 312 or of the pattern 321 in a permutation. St000436The number of occurrences of the pattern 231 or of the pattern 321 in a permutation. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000806The semiperimeter of the associated bargraph. St000123The difference in Coxeter length of a permutation and its image under the Simion-Schmidt map. St001136The largest label with larger sister in the leaf labelled binary unordered tree associated with the perfect matching. St000220The number of occurrences of the pattern 132 in a permutation. St000428The number of occurrences of the pattern 123 or of the pattern 213 in a permutation. St000804The number of occurrences of the vincular pattern |123 in a permutation. St000217The number of occurrences of the pattern 312 in a permutation. St000423The number of occurrences of the pattern 123 or of the pattern 132 in a permutation. St000216The absolute length of a permutation. St000218The number of occurrences of the pattern 213 in a permutation. St000219The number of occurrences of the pattern 231 in a permutation. St000360The number of occurrences of the pattern 32-1. St000801The number of occurrences of the vincular pattern |312 in a permutation. St000802The number of occurrences of the vincular pattern |321 in a permutation. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001511The minimal number of transpositions needed to sort a permutation in either direction. St000334The maz index, the major index of a permutation after replacing fixed points by zeros. St000450The number of edges minus the number of vertices plus 2 of a graph. St000809The reduced reflection length of the permutation. St001726The number of visible inversions of a permutation. St001464The number of bases of the positroid corresponding to the permutation, with all fixed points counterclockwise. St001651The Frankl number of a lattice. St001875The number of simple modules with projective dimension at most 1. St001862The number of crossings of a signed permutation. St000706The product of the factorials of the multiplicities of an integer partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St001568The smallest positive integer that does not appear twice in the partition. St000567The sum of the products of all pairs of parts. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000929The constant term of the character polynomial of an integer partition. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St000456The monochromatic index of a connected graph. St001118The acyclic chromatic index of a graph. St001772The number of occurrences of the signed pattern 12 in a signed permutation. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St000136The dinv of a parking function. St000194The number of primary dinversion pairs of a labelled dyck path corresponding to a parking function. St001821The sorting index of a signed permutation. St001877Number of indecomposable injective modules with projective dimension 2. St000232The number of crossings of a set partition. St000359The number of occurrences of the pattern 23-1. St001433The flag major index of a signed permutation. St001822The number of alignments of a signed permutation. St001866The nesting alignments of a signed permutation. St001892The flag excedance statistic of a signed permutation. St000742The number of big ascents of a permutation after prepending zero. St000260The radius of a connected graph. St001060The distinguishing index of a graph. St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St000356The number of occurrences of the pattern 13-2. St000670The reversal length of a permutation. St000264The girth of a graph, which is not a tree. St000455The second largest eigenvalue of a graph if it is integral. St000477The weight of a partition according to Alladi. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000668The least common multiple of the parts of the partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000997The even-odd crank of an integer partition. St000259The diameter of a connected graph. St000284The Plancherel distribution on integer partitions. St000478Another weight of a partition according to Alladi. St000509The diagonal index (content) of a partition. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000927The alternating sum of the coefficients of the character polynomial of an integer partition. St000934The 2-degree of an integer partition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001128The exponens consonantiae of a partition. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000928The sum of the coefficients of the character polynomial of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001498The normalised height of a Nakayama algebra with magnitude 1. St001570The minimal number of edges to add to make a graph Hamiltonian. St000713The dimension of the irreducible representation of Sp(4) labelled by an integer partition. St000716The dimension of the irreducible representation of Sp(6) labelled by an integer partition. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000460The hook length of the last cell along the main diagonal of an integer partition. St000474Dyson's crank of a partition. St000667The greatest common divisor of the parts of the partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001279The sum of the parts of an integer partition that are at least two. St001360The number of covering relations in Young's lattice below a partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001389The number of partitions of the same length below the given integer partition. St001527The cyclic permutation representation number of an integer partition. St001571The Cartan determinant of the integer partition. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St000145The Dyson rank of a partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001608The number of coloured rooted trees such that the multiplicities of colours are given by a partition. St001627The number of coloured connected graphs such that the multiplicities of colours are given by a partition. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001938The number of transitive monotone factorizations of genus zero of a permutation of given cycle type. St000137The Grundy value of an integer partition. St000944The 3-degree of an integer partition. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001383The BG-rank of an integer partition. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St000223The number of nestings in the permutation. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000034The maximum defect over any reduced expression for a permutation and any subexpression. St000039The number of crossings of a permutation. St000043The number of crossings plus two-nestings of a perfect matching. St000173The segment statistic of a semistandard tableau. St000491The number of inversions of a set partition. St000581The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, 2 is maximal. St000585The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal, (1,3) are consecutive in a block. St000594The number of occurrences of the pattern {{1,3},{2}} such that 1,2 are minimal, (1,3) are consecutive in a block. St000610The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal. St000613The number of occurrences of the pattern {{1,3},{2}} such that 2 is minimal, 3 is maximal, (1,3) are consecutive in a block. St001513The number of nested exceedences of a permutation. St001549The number of restricted non-inversions between exceedances. St001559The number of transpositions that are smaller or equal to a permutation in Bruhat order while not being inversions. St001727The number of invisible inversions of a permutation. St001843The Z-index of a set partition. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St000864The number of circled entries of the shifted recording tableau of a permutation. St001267The length of the Lyndon factorization of the binary word. St000119The number of occurrences of the pattern 321 in a permutation. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000174The flush statistic of a semistandard tableau. St000316The number of non-left-to-right-maxima of a permutation. St000354The number of recoils of a permutation. St000357The number of occurrences of the pattern 12-3. St000358The number of occurrences of the pattern 31-2. St000497The lcb statistic of a set partition. St000538The number of even inversions of a permutation. St000539The number of odd inversions of a permutation. St000559The number of occurrences of the pattern {{1,3},{2,4}} in a set partition. St000563The number of overlapping pairs of blocks of a set partition. St000565The major index of a set partition. St000598The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal, 3 is maximal, (2,3) are consecutive in a block. St000601The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal, (2,3) are consecutive in a block. St000609The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal. St000624The normalized sum of the minimal distances to a greater element. St000646The number of big ascents of a permutation. St000829The Ulam distance of a permutation to the identity permutation. St000834The number of right outer peaks of a permutation. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001083The number of boxed occurrences of 132 in a permutation. St001171The vector space dimension of $Ext_A^1(I_o,A)$ when $I_o$ is the tilting module corresponding to the permutation $o$ in the Auslander algebra $A$ of $K[x]/(x^n)$. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001388The number of non-attacking neighbors of a permutation. St001489The maximum of the number of descents and the number of inverse descents. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001722The number of minimal chains with small intervals between a binary word and the top element. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St001781The interlacing number of a set partition. St001801Half the number of preimage-image pairs of different parity in a permutation. St001841The number of inversions of a set partition. St000031The number of cycles in the cycle decomposition of a permutation. St000117The number of centered tunnels of a Dyck path. St000317The cycle descent number of a permutation. St000365The number of double ascents of a permutation. St000441The number of successions of a permutation. St000489The number of cycles of a permutation of length at most 3. St000588The number of occurrences of the pattern {{1},{2},{3}} such that 1,3 are minimal, 2 is maximal. St000596The number of occurrences of the pattern {{1},{2},{3}} such that 3 is minimal, 1 is maximal. St000649The number of 3-excedences of a permutation. St000665The number of rafts of a permutation. St000672The number of minimal elements in Bruhat order not less than the permutation. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000774The maximal multiplicity of a Laplacian eigenvalue in a graph. St000886The number of permutations with the same antidiagonal sums. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St001017Number of indecomposable injective modules with projective dimension equal to the codominant dimension in the Nakayama algebra corresponding to the Dyck path. St001130The number of two successive successions in a permutation. St001246The maximal difference between two consecutive entries of a permutation. St001270The bandwidth of a graph. St001298The number of repeated entries in the Lehmer code of a permutation. St001423The number of distinct cubes in a binary word. St001461The number of topologically connected components of the chord diagram of a permutation. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked. St001578The minimal number of edges to add or remove to make a graph a line graph. St001645The pebbling number of a connected graph. St001652The length of a longest interval of consecutive numbers. St001662The length of the longest factor of consecutive numbers in a permutation. St001682The number of distinct positions of the pattern letter 1 in occurrences of 123 in a permutation. St001811The Castelnuovo-Mumford regularity of a permutation. St001816Eigenvalues of the top-to-random operator acting on a simple module. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St000209Maximum difference of elements in cycles. St000234The number of global ascents of a permutation. St000451The length of the longest pattern of the form k 1 2. St000675The number of centered multitunnels of a Dyck path. St000923The minimal number with no two order isomorphic substrings of this length in a permutation. St000956The maximal displacement of a permutation. St001061The number of indices that are both descents and recoils of a permutation. St001090The number of pop-stack-sorts needed to sort a permutation. St001116The game chromatic number of a graph. St001245The cyclic maximal difference between two consecutive entries of a permutation. St001760The number of prefix or suffix reversals needed to sort a permutation. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000056The decomposition (or block) number of a permutation. St000724The label of the leaf of the path following the smaller label in the increasing binary tree associated to a permutation. St001004The number of indices that are either left-to-right maxima or right-to-left minima. St001005The number of indices for a permutation that are either left-to-right maxima or right-to-left minima but not both. St001883The mutual visibility number of a graph. St000226The convexity of a permutation. St000626The minimal period of a binary word.