Your data matches 9 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001714
Mp00099: Dyck paths bounce pathDyck paths
Mp00233: Dyck paths skew partitionSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St001714: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> 0
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> 0
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> 0
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> 0
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> 0
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> 0
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> 0
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> 0
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1,1],[1]]
=> [1]
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1,1],[1]]
=> [1]
=> 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1,1],[1]]
=> [1]
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1,1],[1]]
=> [1]
=> 0
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1,1],[1]]
=> [1]
=> 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1,1],[1]]
=> [1]
=> 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> [2,1]
=> 0
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
Description
The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. In particular, partitions with statistic $0$ are wide partitions.
Matching statistic: St000516
Mp00099: Dyck paths bounce pathDyck paths
Mp00296: Dyck paths Knuth-KrattenthalerDyck paths
Mp00201: Dyck paths RingelPermutations
St000516: Permutations ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 38%
Values
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 0
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => 0
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 0
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => 0
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 0
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => 0
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => 0
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => 0
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 0
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => 0
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => 0
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => 0
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => 0
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => 0
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [7,6,4,5,1,2,3] => ? = 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [7,3,5,1,6,2,4] => ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,7,5,1,2,3,4] => ? = 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [7,6,4,5,1,2,3] => ? = 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,7,5,1,2,3,4] => ? = 0
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [7,3,6,5,1,2,4] => ? = 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,7,5,1,2,3,4] => ? = 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ? = 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [7,4,1,6,2,3,5] => ? = 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => ? = 0
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [7,4,1,6,2,3,5] => ? = 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,3,1,6,2,4,5] => ? = 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [7,3,5,1,6,2,4] => ? = 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,7,5,1,2,3,4] => ? = 0
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => ? = 0
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,7,5,1,2,3,4] => ? = 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,3,1,6,2,4,5] => ? = 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [7,3,6,5,1,2,4] => ? = 0
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,7,5,1,2,3,4] => ? = 0
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,3,1,6,2,4,5] => ? = 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [7,3,4,1,6,2,5] => ? = 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => ? = 0
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => ? = 0
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => ? = 0
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,3,1,6,2,4,5] => ? = 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [7,3,6,5,1,2,4] => ? = 0
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => ? = 0
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,3,1,6,2,4,5] => ? = 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [7,3,4,6,1,2,5] => ? = 0
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => ? = 0
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,3,1,6,2,4,5] => ? = 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => ? = 3
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,1,4,5,2,3,6] => ? = 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => ? = 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,1,4,5,2,3,6] => ? = 2
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,7,5,2,4,6] => ? = 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => ? = 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => ? = 0
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => ? = 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => ? = 0
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,7,5,2,4,6] => ? = 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 2
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => ? = 0
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,7,5,2,4,6] => ? = 2
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => ? = 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ? = 2
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [7,4,1,6,2,3,5] => ? = 1
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => ? = 0
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [7,4,1,6,2,3,5] => ? = 1
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,3,1,6,2,4,5] => ? = 1
Description
The number of stretching pairs of a permutation. This is the number of pairs $(i,j)$ with $\pi(i) < i < j < \pi(j)$.
Mp00099: Dyck paths bounce pathDyck paths
Mp00296: Dyck paths Knuth-KrattenthalerDyck paths
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St001811: Permutations ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 38%
Values
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 0
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 0
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 0
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => 0
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 0
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 0
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => 0
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 0
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => 0
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 0
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [4,5,6,3,2,1] => ? = 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,5,4,6,2,1] => ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,2,1] => ? = 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [4,5,6,3,2,1] => ? = 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,2,1] => ? = 0
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [4,5,3,6,2,1] => ? = 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,2,1] => ? = 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => ? = 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,4,5,3,6,1] => ? = 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => ? = 0
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,4,5,3,6,1] => ? = 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => ? = 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,5,4,6,2,1] => ? = 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,2,1] => ? = 0
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => ? = 0
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,2,1] => ? = 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => ? = 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [4,5,3,6,2,1] => ? = 0
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,2,1] => ? = 0
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => ? = 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,5,4,2,6,1] => ? = 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,2,6,1] => ? = 0
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => ? = 0
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,2,6,1] => ? = 0
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => ? = 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [4,5,3,6,2,1] => ? = 0
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,2,6,1] => ? = 0
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => ? = 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,5,3,2,6,1] => ? = 0
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,2,6,1] => ? = 0
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => ? = 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,4,3,2,6] => ? = 3
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,5,3,2,6] => ? = 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,2,6] => ? = 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,5,3,2,6] => ? = 2
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,3,5,2,6] => ? = 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => ? = 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => ? = 0
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,2,6] => ? = 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => ? = 0
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,3,5,2,6] => ? = 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,4,2,5,6] => ? = 2
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => ? = 0
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,3,5,2,6] => ? = 2
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,3,2,5,6] => ? = 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => ? = 2
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,4,5,3,6,1] => ? = 1
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => ? = 0
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,4,5,3,6,1] => ? = 1
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => ? = 1
Description
The Castelnuovo-Mumford regularity of a permutation. The ''Castelnuovo-Mumford regularity'' of a permutation $\sigma$ is the ''Castelnuovo-Mumford regularity'' of the ''matrix Schubert variety'' $X_\sigma$. Equivalently, it is the difference between the degrees of the ''Grothendieck polynomial'' and the ''Schubert polynomial'' for $\sigma$. It can be computed by subtracting the ''Coxeter length'' [[St000018]] from the ''Rajchgot index'' [[St001759]].
Matching statistic: St001431
Mp00099: Dyck paths bounce pathDyck paths
Mp00296: Dyck paths Knuth-KrattenthalerDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
St001431: Dyck paths ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 38%
Values
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 0 + 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 0 + 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 0 + 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 0 + 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 0 + 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 0 + 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> ? = 1 + 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> ? = 3 + 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> ? = 2 + 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> ? = 2 + 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> ? = 2 + 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ? = 1 + 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> ? = 2 + 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> ? = 1 + 1
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> ? = 1 + 1
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> ? = 1 + 1
Description
Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. The modified algebra B is obtained from the stable Auslander algebra kQ/I by deleting all relations which contain walks of length at least three (conjectural this step of deletion is not necessary as the stable higher Auslander algebras might be quadratic) and taking as B then the algebra kQ^(op)/J when J is the quadratic perp of the ideal I. See http://www.findstat.org/DyckPaths/NakayamaAlgebras for the definition of Loewy length and Nakayama algebras associated to Dyck paths.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00067: Permutations Foata bijectionPermutations
Mp00160: Permutations graph of inversionsGraphs
St001645: Graphs ⟶ ℤResult quality: 6% values known / values provided: 6%distinct values known / distinct values provided: 25%
Values
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? = 0 + 5
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? = 0 + 5
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? = 1 + 5
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 5
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? = 0 + 5
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 5
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 5
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 5
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? = 0 + 5
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? = 1 + 5
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 5
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ? = 0 + 5
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 5
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 5
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 5
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> ? = 2 + 5
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 5
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 5
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 5
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 5
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? = 1 + 5
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 5
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? = 0 + 5
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 0 + 5
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 5
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 5
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 5
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [4,2,5,3,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 5
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? = 1 + 5
[1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 5
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 5
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 5
[1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 5
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => [3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 5
[1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 5
[1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 5
[1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 5
[1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 5
[1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 5
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 5
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? = 1 + 5
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 5
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => [4,1,2,5,3,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 0 + 5
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 0 + 5
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,4,3,6] => [5,4,1,2,3,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 5
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,4,6,3] => [5,4,1,2,6,3] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 5
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ? = 2 + 5
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 5
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [5,3,1,2,4,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 5
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => [5,3,1,2,6,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 5
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,4,6,3,2] => [5,4,6,1,3,2] => ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,6,5,4,3] => [6,5,4,2,1,3] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => [6,5,2,3,4,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,4,6,5,3,1] => [6,4,2,5,3,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,5,6,4,3,1] => [5,6,2,4,3,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => [6,5,3,2,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,6,5,2,1] => [6,3,4,5,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,5,6,4,2,1] => [5,3,6,4,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [4,3,6,5,2,1] => [6,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [4,5,6,3,2,1] => [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [5,4,6,3,2,1] => [5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => [7,6,5,4,2,1,3] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 2 + 5
[1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,7,6,5,4,1] => [7,6,5,2,3,4,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 2 + 5
[1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [2,4,7,6,5,3,1] => [7,6,4,2,5,3,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 2 + 5
[1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [2,5,7,6,4,3,1] => [7,5,6,2,4,3,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 2 + 5
[1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [2,6,7,5,4,3,1] => [6,7,5,2,4,3,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 2 + 5
[1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [3,2,7,6,5,4,1] => [7,6,5,3,2,4,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 2 + 5
[1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [3,4,7,6,5,2,1] => [7,6,3,4,5,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 2 + 5
[1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [3,5,7,6,4,2,1] => [7,5,3,6,4,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 2 + 5
[1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [3,6,7,5,4,2,1] => [6,7,3,5,4,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 2 + 5
[1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [4,3,7,6,5,2,1] => [7,6,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 2 + 5
[1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [4,5,7,6,3,2,1] => [7,4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 2 + 5
[1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [4,6,7,5,3,2,1] => [6,4,7,5,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 2 + 5
[1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [5,4,7,6,3,2,1] => [7,5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 2 + 5
[1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [5,6,7,4,3,2,1] => [5,6,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 2 + 5
[1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => [6,5,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 2 + 5
Description
The pebbling number of a connected graph.
Mp00099: Dyck paths bounce pathDyck paths
Mp00028: Dyck paths reverseDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 5% values known / values provided: 5%distinct values known / distinct values provided: 62%
Values
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 0 + 2
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 1 + 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? = 0 + 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 0 + 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? = 0 + 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? = 0 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 1 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ? = 0 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ? = 0 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ? = 0 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ? = 0 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 2 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 1 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ? = 0 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 1 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 1 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ? = 0 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ? = 0 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ? = 0 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ? = 0 + 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ? = 0 + 2
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ? = 0 + 2
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ? = 0 + 2
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 2
[1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ? = 0 + 2
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ? = 0 + 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 1 + 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 0 + 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 0 + 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ? = 0 + 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 0 + 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 2 + 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 1 + 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> ? = 0 + 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 1 + 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 1 + 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 1 + 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 0 + 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> ? = 0 + 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 0 + 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 1 + 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ? = 0 + 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 0 + 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 1 + 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 1 + 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> ? = 0 + 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> ? = 0 + 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> ? = 0 + 2
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 1 + 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 3 + 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 2 + 2
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 1 + 2
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> 4 = 2 + 2
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 1 + 2
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 5 = 3 + 2
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> 4 = 2 + 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 4 + 2
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 5 = 3 + 2
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St000454
Mp00024: Dyck paths to 321-avoiding permutationPermutations
Mp00071: Permutations descent compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000454: Graphs ⟶ ℤResult quality: 5% values known / values provided: 5%distinct values known / distinct values provided: 25%
Values
[1,1,0,0,1,0]
=> [3,1,2] => [1,2] => ([(1,2)],3)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [2,1,3,4] => [1,3] => ([(2,3)],4)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 1
[1,1,0,1,0,0,1,0]
=> [3,1,2,4] => [1,3] => ([(2,3)],4)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,3] => ([(2,3)],4)
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => [1,4] => ([(3,4)],5)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,5,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,4,5] => [1,4] => ([(3,4)],5)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,1,2,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,4,5,2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,3,5] => [1,4] => ([(3,4)],5)
=> 1 = 0 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,4,2,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [1,4] => ([(3,4)],5)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,6,3,5] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,5,6] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,4,1,3,5,6] => [2,4] => ([(3,5),(4,5)],6)
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,1,4,5,3,6] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,4,1,5,3,6] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,4,5,6,3] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,4,1,5,6,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,5,3,6,4] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,5,6,3,4] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,5,1,6,3,4] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,5,6,1,3,4] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,1,5,3,4,6] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [2,5,1,3,4,6] => [2,4] => ([(3,5),(4,5)],6)
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [2,1,3,5,4,6] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,3,1,5,4,6] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4,6] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,3,5,6,4] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,3,1,5,6,4] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,3,4,5,6] => [1,5] => ([(4,5)],6)
=> 1 = 0 + 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,1,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,3,5,6,2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,4,6,2,5] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [3,1,2,4,5,6] => [1,5] => ([(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,3,4,5,2,6] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,4,5,6,2,3] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,2,4,6,3,5] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5,6] => [1,5] => ([(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,2,4,5,3,6] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,2,5,6,3,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [5,1,2,3,4,6] => [1,5] => ([(4,5)],6)
=> 1 = 0 + 1
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,2,3,5,4,6] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => [1,5] => ([(4,5)],6)
=> 1 = 0 + 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,2,3,6,4,5] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6] => [1,6] => ([(5,6)],7)
=> 1 = 0 + 1
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001491
Mp00327: Dyck paths inverse Kreweras complementDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St001491: Binary words ⟶ ℤResult quality: 4% values known / values provided: 4%distinct values known / distinct values provided: 25%
Values
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 110 => 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 110 => 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1110 => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 10110 => ? = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 1100 => 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 1000 => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 11010 => ? = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 10010 => ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> 110 => 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 1110 => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> 10110 => ? = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> 1100 => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1000 => 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> 11010 => ? = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> 10010 => ? = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 11110 => ? = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> 101110 => ? = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> 110110 => ? = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 1001110 => ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 1010110 => ? = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 11100 => ? = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> 101100 => ? = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> 11000 => ? = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 10000 => ? = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 101000 => ? = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> 110100 => ? = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 100010 => ? = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> 1001100 => ? = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> 111010 => ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> 1011010 => ? = 0 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> 110010 => ? = 0 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> 1000110 => ? = 0 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> 1010010 => ? = 1 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> 1100110 => ? = 0 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> 100100 => ? = 0 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> 10001110 => ? = 1 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> 1101010 => ? = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> 1001010 => ? = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> 10010110 => ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 110 => 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 1110 => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [2,1,1]
=> 10110 => ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 1100 => 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 1000 => 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,2,1]
=> 11010 => ? = 0 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [3,1]
=> 10010 => ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> 11110 => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,1,1,1]
=> 101110 => ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1]
=> 110110 => ? = 0 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [3,1,1,1]
=> 1001110 => ? = 1 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1]
=> 1010110 => ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,2]
=> 11100 => ? = 1 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,2]
=> 101100 => ? = 0 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> 11000 => ? = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 10000 => ? = 0 + 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3]
=> 101000 => ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,3,2]
=> 110100 => ? = 0 + 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,1]
=> 100010 => ? = 0 + 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [4,2,2]
=> 1001100 => ? = 1 + 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1]
=> 111010 => ? = 1 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1]
=> 1011010 => ? = 0 + 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,3,1]
=> 110010 => ? = 0 + 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [4,1,1]
=> 1000110 => ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1]
=> 110 => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1]
=> 1110 => 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [2,2]
=> 1100 => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [3]
=> 1000 => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1]
=> 110 => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1]
=> 1110 => 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [2,2]
=> 1100 => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [3]
=> 1000 => 1 = 0 + 1
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset. Let $A_n=K[x]/(x^n)$. We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.
Matching statistic: St001868
Mp00099: Dyck paths bounce pathDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00170: Permutations to signed permutationSigned permutations
St001868: Signed permutations ⟶ ℤResult quality: 4% values known / values provided: 4%distinct values known / distinct values provided: 25%
Values
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,4,3,2,5] => 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => ? = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => ? = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => ? = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => ? = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => ? = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => ? = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,4,3,2,5] => 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => ? = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [3,2,1,5,4] => ? = 0 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => ? = 0 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [3,2,1,5,4] => ? = 0 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => ? = 1 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,4,3,2,5] => 1 = 0 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [3,2,1,5,4] => ? = 0 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => ? = 1 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => ? = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [3,2,1,5,4] => ? = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [1,2,3,5,4,6] => ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [1,2,4,3,5,6] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [1,2,4,3,6,5] => ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [1,2,3,5,4,6] => ? = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [1,2,4,3,6,5] => ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,4,3,6] => [1,2,5,4,3,6] => ? = 0 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [1,2,4,3,6,5] => ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [1,3,2,4,5,6] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [1,3,2,4,6,5] => ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [1,3,2,5,4,6] => ? = 0 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [1,3,2,4,6,5] => ? = 1 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,5,4] => [1,3,2,6,5,4] => ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [1,2,4,3,5,6] => ? = 1 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [1,2,4,3,6,5] => ? = 0 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [1,3,2,5,4,6] => ? = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [1,2,4,3,6,5] => ? = 0 + 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,5,4] => [1,3,2,6,5,4] => ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,4,3,6] => [1,2,5,4,3,6] => ? = 0 + 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [1,2,4,3,6,5] => ? = 0 + 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,5,4] => [1,3,2,6,5,4] => ? = 1 + 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,3,2,5,6] => [1,4,3,2,5,6] => ? = 1 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,3,2,6,5] => [1,4,3,2,6,5] => ? = 0 + 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [1,3,2,5,4,6] => ? = 0 + 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,3,2,6,5] => [1,4,3,2,6,5] => ? = 0 + 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,5,4] => [1,3,2,6,5,4] => ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,4,3,6] => [1,2,5,4,3,6] => ? = 0 + 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,3,2,6,5] => [1,4,3,2,6,5] => ? = 0 + 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,5,4] => [1,3,2,6,5,4] => ? = 1 + 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,4,3,2,6] => [1,5,4,3,2,6] => ? = 0 + 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,3,2,6,5] => [1,4,3,2,6,5] => ? = 0 + 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,5,4] => [1,3,2,6,5,4] => ? = 1 + 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => ? = 3 + 1
Description
The number of alignments of type NE of a signed permutation. An alignment of type NE of a signed permutation $\pi\in\mathfrak H_n$ is a pair $1 \leq i, j\leq n$ such that $\pi(i) < i < j \leq \pi(j)$.