searching the database
Your data matches 157 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001749
St001749: Finite Cartan types ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> 1
['A',2]
=> 2
['B',2]
=> 2
['G',2]
=> 2
['A',3]
=> 3
['B',3]
=> 3
['C',3]
=> 3
['A',4]
=> 4
['B',4]
=> 6
['C',4]
=> 6
['D',4]
=> 6
['F',4]
=> 8
['A',5]
=> 5
['B',5]
=> 7
['C',5]
=> 7
['D',5]
=> 7
['A',6]
=> 7
['B',6]
=> 14
['C',6]
=> 14
['D',6]
=> 13
['E',6]
=> 12
['A',7]
=> 12
['B',7]
=> 16
['C',7]
=> 16
['D',7]
=> 16
['E',7]
=> 22
['A',8]
=> 15
['B',8]
=> 29
['C',8]
=> 29
['D',8]
=> 30
['E',8]
=> 52
Description
The number of distinct dimensions of the irreducible representations of the Weyl group of a finite Cartan type.
Matching statistic: St001007
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001007: Dyck paths ⟶ ℤResult quality: 24% ●values known / values provided: 26%●distinct values known / distinct values provided: 24%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001007: Dyck paths ⟶ ℤResult quality: 24% ●values known / values provided: 26%●distinct values known / distinct values provided: 24%
Values
['A',1]
=> ([],1)
=> [1]
=> [1,0]
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> 3
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> 3
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,1,0,0]
=> ? = 6
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,1,0,0]
=> ? = 6
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> [5,3,3,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> ? = 6
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [11,7,5,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> ? = 8
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? = 5
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 7
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 7
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [7,5,4,3,1]
=> [1,0,1,0,1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 7
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> [6,5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,1,1,0,0,0,1,0,0,0,1,0,0]
=> ? = 7
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> [11,9,7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0,0]
=> ? = 14
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> [11,9,7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0,0]
=> ? = 14
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> [9,7,5,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0,0]
=> ? = 13
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> [11,8,7,5,4,1]
=> [1,0,1,0,1,0,1,1,1,0,1,1,1,0,1,0,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0,0]
=> ? = 12
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ?
=> ?
=> ? = 12
['B',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ?
=> ? = 16
['C',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ?
=> ? = 16
['D',7]
=> ([(0,34),(1,33),(2,27),(3,31),(3,37),(4,30),(4,31),(5,27),(5,30),(6,33),(6,34),(6,37),(8,26),(9,25),(10,14),(11,41),(12,41),(13,39),(14,7),(15,16),(16,14),(17,20),(17,39),(18,21),(18,39),(19,22),(20,23),(20,40),(21,24),(21,40),(22,29),(23,11),(23,38),(24,12),(24,38),(25,10),(25,16),(26,9),(26,32),(27,19),(28,22),(28,36),(29,11),(29,12),(30,19),(30,28),(31,28),(31,35),(32,15),(32,25),(33,13),(33,17),(34,13),(34,18),(35,20),(35,21),(35,36),(36,23),(36,24),(36,29),(37,17),(37,18),(37,35),(38,32),(38,41),(39,8),(39,40),(40,26),(40,38),(41,15)],42)
=> ?
=> ?
=> ? = 16
['E',7]
=> ([(0,49),(1,40),(2,41),(3,40),(3,46),(4,46),(4,52),(5,41),(5,51),(6,49),(6,51),(6,52),(7,9),(9,8),(10,48),(11,39),(12,24),(13,14),(13,47),(14,27),(15,22),(15,34),(16,23),(16,33),(17,60),(18,57),(19,56),(20,58),(21,13),(21,58),(22,11),(22,62),(23,10),(23,61),(24,7),(25,38),(26,24),(27,26),(28,17),(28,59),(29,28),(29,53),(30,42),(31,19),(31,53),(32,18),(32,60),(33,15),(33,35),(33,61),(34,21),(34,62),(35,22),(35,54),(36,37),(36,56),(37,18),(37,55),(38,12),(38,26),(39,25),(40,30),(41,45),(42,17),(42,32),(43,36),(43,44),(43,53),(44,32),(44,37),(44,59),(45,19),(45,36),(46,30),(46,50),(47,27),(47,38),(48,20),(48,21),(49,29),(49,31),(50,28),(50,42),(50,44),(51,31),(51,43),(51,45),(52,29),(52,43),(52,50),(53,16),(53,56),(53,59),(54,20),(54,62),(55,57),(55,61),(56,23),(56,55),(57,54),(58,25),(58,47),(59,33),(59,55),(59,60),(60,35),(60,57),(61,34),(61,48),(61,54),(62,39),(62,58)],63)
=> ?
=> ?
=> ? = 22
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ?
=> ?
=> ? = 15
['B',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ?
=> ? = 29
['C',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ?
=> ? = 29
['D',8]
=> ([(0,41),(1,40),(2,34),(3,45),(3,46),(4,45),(4,50),(5,44),(5,46),(6,34),(6,44),(7,40),(7,41),(7,50),(9,33),(10,31),(11,32),(12,16),(13,53),(14,54),(15,54),(16,8),(17,16),(18,22),(18,53),(19,23),(19,53),(20,24),(21,25),(22,29),(22,55),(23,30),(23,55),(24,26),(25,17),(26,39),(27,14),(27,52),(28,15),(28,52),(29,27),(29,51),(30,28),(30,51),(31,11),(31,42),(32,9),(32,36),(33,12),(33,17),(34,20),(35,38),(35,49),(36,25),(36,33),(37,24),(37,38),(38,26),(38,47),(39,14),(39,15),(40,13),(40,18),(41,13),(41,19),(42,32),(42,43),(43,21),(43,36),(44,20),(44,37),(45,35),(45,48),(46,35),(46,37),(47,27),(47,28),(47,39),(48,22),(48,23),(48,49),(49,29),(49,30),(49,47),(50,18),(50,19),(50,48),(51,42),(51,52),(52,43),(52,54),(53,10),(53,55),(54,21),(55,31),(55,51)],56)
=> ?
=> ?
=> ? = 30
['E',8]
=> ([(0,86),(1,74),(2,75),(3,93),(3,98),(4,92),(4,93),(5,74),(5,97),(6,75),(6,92),(7,86),(7,97),(7,98),(8,12),(10,11),(11,9),(12,10),(13,73),(14,91),(15,24),(15,90),(16,71),(17,70),(18,40),(19,21),(19,72),(20,23),(20,96),(21,46),(22,52),(23,84),(24,22),(24,79),(25,57),(25,66),(26,36),(26,65),(27,39),(27,68),(28,38),(28,67),(29,118),(30,100),(31,104),(32,105),(33,111),(34,113),(35,20),(35,115),(36,15),(36,101),(37,16),(37,111),(38,17),(38,112),(39,14),(39,110),(40,8),(41,55),(41,107),(42,58),(42,102),(43,34),(43,108),(44,72),(45,38),(45,106),(46,40),(47,53),(48,36),(48,104),(49,50),(50,44),(51,41),(51,100),(52,49),(53,76),(54,30),(54,102),(55,32),(55,99),(56,26),(56,48),(56,116),(57,28),(57,45),(57,114),(58,43),(58,109),(59,32),(59,113),(60,56),(60,119),(61,88),(62,45),(62,103),(63,29),(63,115),(64,31),(64,116),(65,37),(65,101),(66,35),(66,114),(67,60),(67,112),(68,25),(68,77),(68,110),(69,13),(69,83),(70,61),(71,69),(72,18),(72,46),(73,19),(73,44),(74,85),(75,47),(76,34),(76,59),(77,57),(77,62),(77,117),(78,55),(78,59),(78,108),(79,52),(79,82),(80,51),(80,87),(80,102),(81,53),(81,95),(82,49),(82,83),(83,50),(83,73),(84,31),(84,48),(85,30),(85,51),(86,42),(86,54),(87,41),(87,78),(87,109),(88,33),(88,37),(89,69),(89,82),(90,79),(90,89),(91,35),(91,63),(92,47),(92,81),(93,81),(93,94),(94,58),(94,87),(94,95),(95,43),(95,76),(95,78),(96,56),(96,64),(96,84),(97,54),(97,80),(97,85),(98,42),(98,80),(98,94),(99,105),(99,117),(100,39),(100,107),(101,90),(101,111),(102,27),(102,100),(102,109),(103,29),(103,106),(104,33),(104,101),(105,103),(106,112),(106,118),(107,99),(107,110),(108,77),(108,99),(108,113),(109,68),(109,107),(109,108),(110,66),(110,91),(110,117),(111,71),(111,89),(112,70),(112,119),(113,62),(113,105),(114,67),(114,106),(114,115),(115,60),(115,96),(115,118),(116,65),(116,88),(116,104),(117,63),(117,103),(117,114),(118,64),(118,119),(119,61),(119,116)],120)
=> ?
=> ?
=> ? = 52
Description
Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000024
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000024: Dyck paths ⟶ ℤResult quality: 24% ●values known / values provided: 26%●distinct values known / distinct values provided: 24%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000024: Dyck paths ⟶ ℤResult quality: 24% ●values known / values provided: 26%●distinct values known / distinct values provided: 24%
Values
['A',1]
=> ([],1)
=> [1]
=> [1,0]
=> 0 = 1 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> 2 = 3 - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> 2 = 3 - 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 3 = 4 - 1
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,1,0,0]
=> ? = 6 - 1
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,1,0,0]
=> ? = 6 - 1
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> [5,3,3,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> ? = 6 - 1
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [11,7,5,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> ? = 8 - 1
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? = 5 - 1
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 7 - 1
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 7 - 1
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [7,5,4,3,1]
=> [1,0,1,0,1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 7 - 1
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> [6,5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,1,1,0,0,0,1,0,0,0,1,0,0]
=> ? = 7 - 1
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> [11,9,7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0,0]
=> ? = 14 - 1
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> [11,9,7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0,0]
=> ? = 14 - 1
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> [9,7,5,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0,0]
=> ? = 13 - 1
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> [11,8,7,5,4,1]
=> [1,0,1,0,1,0,1,1,1,0,1,1,1,0,1,0,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0,0]
=> ? = 12 - 1
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ?
=> ?
=> ? = 12 - 1
['B',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ?
=> ? = 16 - 1
['C',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ?
=> ? = 16 - 1
['D',7]
=> ([(0,34),(1,33),(2,27),(3,31),(3,37),(4,30),(4,31),(5,27),(5,30),(6,33),(6,34),(6,37),(8,26),(9,25),(10,14),(11,41),(12,41),(13,39),(14,7),(15,16),(16,14),(17,20),(17,39),(18,21),(18,39),(19,22),(20,23),(20,40),(21,24),(21,40),(22,29),(23,11),(23,38),(24,12),(24,38),(25,10),(25,16),(26,9),(26,32),(27,19),(28,22),(28,36),(29,11),(29,12),(30,19),(30,28),(31,28),(31,35),(32,15),(32,25),(33,13),(33,17),(34,13),(34,18),(35,20),(35,21),(35,36),(36,23),(36,24),(36,29),(37,17),(37,18),(37,35),(38,32),(38,41),(39,8),(39,40),(40,26),(40,38),(41,15)],42)
=> ?
=> ?
=> ? = 16 - 1
['E',7]
=> ([(0,49),(1,40),(2,41),(3,40),(3,46),(4,46),(4,52),(5,41),(5,51),(6,49),(6,51),(6,52),(7,9),(9,8),(10,48),(11,39),(12,24),(13,14),(13,47),(14,27),(15,22),(15,34),(16,23),(16,33),(17,60),(18,57),(19,56),(20,58),(21,13),(21,58),(22,11),(22,62),(23,10),(23,61),(24,7),(25,38),(26,24),(27,26),(28,17),(28,59),(29,28),(29,53),(30,42),(31,19),(31,53),(32,18),(32,60),(33,15),(33,35),(33,61),(34,21),(34,62),(35,22),(35,54),(36,37),(36,56),(37,18),(37,55),(38,12),(38,26),(39,25),(40,30),(41,45),(42,17),(42,32),(43,36),(43,44),(43,53),(44,32),(44,37),(44,59),(45,19),(45,36),(46,30),(46,50),(47,27),(47,38),(48,20),(48,21),(49,29),(49,31),(50,28),(50,42),(50,44),(51,31),(51,43),(51,45),(52,29),(52,43),(52,50),(53,16),(53,56),(53,59),(54,20),(54,62),(55,57),(55,61),(56,23),(56,55),(57,54),(58,25),(58,47),(59,33),(59,55),(59,60),(60,35),(60,57),(61,34),(61,48),(61,54),(62,39),(62,58)],63)
=> ?
=> ?
=> ? = 22 - 1
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ?
=> ?
=> ? = 15 - 1
['B',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ?
=> ? = 29 - 1
['C',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ?
=> ? = 29 - 1
['D',8]
=> ([(0,41),(1,40),(2,34),(3,45),(3,46),(4,45),(4,50),(5,44),(5,46),(6,34),(6,44),(7,40),(7,41),(7,50),(9,33),(10,31),(11,32),(12,16),(13,53),(14,54),(15,54),(16,8),(17,16),(18,22),(18,53),(19,23),(19,53),(20,24),(21,25),(22,29),(22,55),(23,30),(23,55),(24,26),(25,17),(26,39),(27,14),(27,52),(28,15),(28,52),(29,27),(29,51),(30,28),(30,51),(31,11),(31,42),(32,9),(32,36),(33,12),(33,17),(34,20),(35,38),(35,49),(36,25),(36,33),(37,24),(37,38),(38,26),(38,47),(39,14),(39,15),(40,13),(40,18),(41,13),(41,19),(42,32),(42,43),(43,21),(43,36),(44,20),(44,37),(45,35),(45,48),(46,35),(46,37),(47,27),(47,28),(47,39),(48,22),(48,23),(48,49),(49,29),(49,30),(49,47),(50,18),(50,19),(50,48),(51,42),(51,52),(52,43),(52,54),(53,10),(53,55),(54,21),(55,31),(55,51)],56)
=> ?
=> ?
=> ? = 30 - 1
['E',8]
=> ([(0,86),(1,74),(2,75),(3,93),(3,98),(4,92),(4,93),(5,74),(5,97),(6,75),(6,92),(7,86),(7,97),(7,98),(8,12),(10,11),(11,9),(12,10),(13,73),(14,91),(15,24),(15,90),(16,71),(17,70),(18,40),(19,21),(19,72),(20,23),(20,96),(21,46),(22,52),(23,84),(24,22),(24,79),(25,57),(25,66),(26,36),(26,65),(27,39),(27,68),(28,38),(28,67),(29,118),(30,100),(31,104),(32,105),(33,111),(34,113),(35,20),(35,115),(36,15),(36,101),(37,16),(37,111),(38,17),(38,112),(39,14),(39,110),(40,8),(41,55),(41,107),(42,58),(42,102),(43,34),(43,108),(44,72),(45,38),(45,106),(46,40),(47,53),(48,36),(48,104),(49,50),(50,44),(51,41),(51,100),(52,49),(53,76),(54,30),(54,102),(55,32),(55,99),(56,26),(56,48),(56,116),(57,28),(57,45),(57,114),(58,43),(58,109),(59,32),(59,113),(60,56),(60,119),(61,88),(62,45),(62,103),(63,29),(63,115),(64,31),(64,116),(65,37),(65,101),(66,35),(66,114),(67,60),(67,112),(68,25),(68,77),(68,110),(69,13),(69,83),(70,61),(71,69),(72,18),(72,46),(73,19),(73,44),(74,85),(75,47),(76,34),(76,59),(77,57),(77,62),(77,117),(78,55),(78,59),(78,108),(79,52),(79,82),(80,51),(80,87),(80,102),(81,53),(81,95),(82,49),(82,83),(83,50),(83,73),(84,31),(84,48),(85,30),(85,51),(86,42),(86,54),(87,41),(87,78),(87,109),(88,33),(88,37),(89,69),(89,82),(90,79),(90,89),(91,35),(91,63),(92,47),(92,81),(93,81),(93,94),(94,58),(94,87),(94,95),(95,43),(95,76),(95,78),(96,56),(96,64),(96,84),(97,54),(97,80),(97,85),(98,42),(98,80),(98,94),(99,105),(99,117),(100,39),(100,107),(101,90),(101,111),(102,27),(102,100),(102,109),(103,29),(103,106),(104,33),(104,101),(105,103),(106,112),(106,118),(107,99),(107,110),(108,77),(108,99),(108,113),(109,68),(109,107),(109,108),(110,66),(110,91),(110,117),(111,71),(111,89),(112,70),(112,119),(113,62),(113,105),(114,67),(114,106),(114,115),(115,60),(115,96),(115,118),(116,65),(116,88),(116,104),(117,63),(117,103),(117,114),(118,64),(118,119),(119,61),(119,116)],120)
=> ?
=> ?
=> ? = 52 - 1
Description
The number of double up and double down steps of a Dyck path.
In other words, this is the number of double rises (and, equivalently, the number of double falls) of a Dyck path.
Matching statistic: St000183
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000183: Integer partitions ⟶ ℤResult quality: 18% ●values known / values provided: 19%●distinct values known / distinct values provided: 18%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000183: Integer partitions ⟶ ℤResult quality: 18% ●values known / values provided: 19%●distinct values known / distinct values provided: 18%
Values
['A',1]
=> ([],1)
=> [2]
=> [1,1]
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> [2,2,1]
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [2,2,1,1]
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> [2,2,1,1,1,1]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> [3,3,2,2,1,1,1,1]
=> ? = 3
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> [4,4,3,3,3,3]
=> 3
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> [4,4,3,3,3,3]
=> 3
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [10,10,10,5,5,2]
=> [6,6,5,5,5,3,3,3,3,3]
=> ? = 4
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> [10,10,9,9,8,8,8,8]
=> ? = 6
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> [10,10,9,9,8,8,8,8]
=> ? = 6
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> [6,6,6,6,6,6,6,3,3,2]
=> [10,10,9,7,7,7]
=> ? = 6
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [12,12,12,12,12,12,12,12,4,3,2]
=> [11,11,10,9,8,8,8,8,8,8,8,8]
=> ? = 8
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [12,12,12,12,12,12,12,12,12,6,6,6,4,2]
=> [14,14,13,13,12,12,9,9,9,9,9,9]
=> ? = 5
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> [26,26,25,25,25,25,25,25,25,25]
=> ? = 7
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> [26,26,25,25,25,25,25,25,25,25]
=> ? = 7
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [16,16,16,16,16,16,16,8,8,8,8,8,8,8,8,4,2]
=> [17,17,16,16,15,15,15,15,7,7,7,7,7,7,7,7]
=> ? = 7
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> [14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,7,7,7,7,7,2]
=> [34,34,33,33,33,33,33,28,28,28,28,28,28,28]
=> ? = 7
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ?
=> ?
=> ? = 14
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ?
=> ?
=> ? = 14
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> ?
=> ?
=> ? = 13
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> ?
=> ?
=> ? = 12
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ?
=> ?
=> ? = 12
['B',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ?
=> ? = 16
['C',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ?
=> ? = 16
['D',7]
=> ([(0,34),(1,33),(2,27),(3,31),(3,37),(4,30),(4,31),(5,27),(5,30),(6,33),(6,34),(6,37),(8,26),(9,25),(10,14),(11,41),(12,41),(13,39),(14,7),(15,16),(16,14),(17,20),(17,39),(18,21),(18,39),(19,22),(20,23),(20,40),(21,24),(21,40),(22,29),(23,11),(23,38),(24,12),(24,38),(25,10),(25,16),(26,9),(26,32),(27,19),(28,22),(28,36),(29,11),(29,12),(30,19),(30,28),(31,28),(31,35),(32,15),(32,25),(33,13),(33,17),(34,13),(34,18),(35,20),(35,21),(35,36),(36,23),(36,24),(36,29),(37,17),(37,18),(37,35),(38,32),(38,41),(39,8),(39,40),(40,26),(40,38),(41,15)],42)
=> ?
=> ?
=> ? = 16
['E',7]
=> ([(0,49),(1,40),(2,41),(3,40),(3,46),(4,46),(4,52),(5,41),(5,51),(6,49),(6,51),(6,52),(7,9),(9,8),(10,48),(11,39),(12,24),(13,14),(13,47),(14,27),(15,22),(15,34),(16,23),(16,33),(17,60),(18,57),(19,56),(20,58),(21,13),(21,58),(22,11),(22,62),(23,10),(23,61),(24,7),(25,38),(26,24),(27,26),(28,17),(28,59),(29,28),(29,53),(30,42),(31,19),(31,53),(32,18),(32,60),(33,15),(33,35),(33,61),(34,21),(34,62),(35,22),(35,54),(36,37),(36,56),(37,18),(37,55),(38,12),(38,26),(39,25),(40,30),(41,45),(42,17),(42,32),(43,36),(43,44),(43,53),(44,32),(44,37),(44,59),(45,19),(45,36),(46,30),(46,50),(47,27),(47,38),(48,20),(48,21),(49,29),(49,31),(50,28),(50,42),(50,44),(51,31),(51,43),(51,45),(52,29),(52,43),(52,50),(53,16),(53,56),(53,59),(54,20),(54,62),(55,57),(55,61),(56,23),(56,55),(57,54),(58,25),(58,47),(59,33),(59,55),(59,60),(60,35),(60,57),(61,34),(61,48),(61,54),(62,39),(62,58)],63)
=> ?
=> ?
=> ? = 22
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ?
=> ?
=> ? = 15
['B',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ?
=> ? = 29
['C',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ?
=> ? = 29
['D',8]
=> ([(0,41),(1,40),(2,34),(3,45),(3,46),(4,45),(4,50),(5,44),(5,46),(6,34),(6,44),(7,40),(7,41),(7,50),(9,33),(10,31),(11,32),(12,16),(13,53),(14,54),(15,54),(16,8),(17,16),(18,22),(18,53),(19,23),(19,53),(20,24),(21,25),(22,29),(22,55),(23,30),(23,55),(24,26),(25,17),(26,39),(27,14),(27,52),(28,15),(28,52),(29,27),(29,51),(30,28),(30,51),(31,11),(31,42),(32,9),(32,36),(33,12),(33,17),(34,20),(35,38),(35,49),(36,25),(36,33),(37,24),(37,38),(38,26),(38,47),(39,14),(39,15),(40,13),(40,18),(41,13),(41,19),(42,32),(42,43),(43,21),(43,36),(44,20),(44,37),(45,35),(45,48),(46,35),(46,37),(47,27),(47,28),(47,39),(48,22),(48,23),(48,49),(49,29),(49,30),(49,47),(50,18),(50,19),(50,48),(51,42),(51,52),(52,43),(52,54),(53,10),(53,55),(54,21),(55,31),(55,51)],56)
=> ?
=> ?
=> ? = 30
['E',8]
=> ([(0,86),(1,74),(2,75),(3,93),(3,98),(4,92),(4,93),(5,74),(5,97),(6,75),(6,92),(7,86),(7,97),(7,98),(8,12),(10,11),(11,9),(12,10),(13,73),(14,91),(15,24),(15,90),(16,71),(17,70),(18,40),(19,21),(19,72),(20,23),(20,96),(21,46),(22,52),(23,84),(24,22),(24,79),(25,57),(25,66),(26,36),(26,65),(27,39),(27,68),(28,38),(28,67),(29,118),(30,100),(31,104),(32,105),(33,111),(34,113),(35,20),(35,115),(36,15),(36,101),(37,16),(37,111),(38,17),(38,112),(39,14),(39,110),(40,8),(41,55),(41,107),(42,58),(42,102),(43,34),(43,108),(44,72),(45,38),(45,106),(46,40),(47,53),(48,36),(48,104),(49,50),(50,44),(51,41),(51,100),(52,49),(53,76),(54,30),(54,102),(55,32),(55,99),(56,26),(56,48),(56,116),(57,28),(57,45),(57,114),(58,43),(58,109),(59,32),(59,113),(60,56),(60,119),(61,88),(62,45),(62,103),(63,29),(63,115),(64,31),(64,116),(65,37),(65,101),(66,35),(66,114),(67,60),(67,112),(68,25),(68,77),(68,110),(69,13),(69,83),(70,61),(71,69),(72,18),(72,46),(73,19),(73,44),(74,85),(75,47),(76,34),(76,59),(77,57),(77,62),(77,117),(78,55),(78,59),(78,108),(79,52),(79,82),(80,51),(80,87),(80,102),(81,53),(81,95),(82,49),(82,83),(83,50),(83,73),(84,31),(84,48),(85,30),(85,51),(86,42),(86,54),(87,41),(87,78),(87,109),(88,33),(88,37),(89,69),(89,82),(90,79),(90,89),(91,35),(91,63),(92,47),(92,81),(93,81),(93,94),(94,58),(94,87),(94,95),(95,43),(95,76),(95,78),(96,56),(96,64),(96,84),(97,54),(97,80),(97,85),(98,42),(98,80),(98,94),(99,105),(99,117),(100,39),(100,107),(101,90),(101,111),(102,27),(102,100),(102,109),(103,29),(103,106),(104,33),(104,101),(105,103),(106,112),(106,118),(107,99),(107,110),(108,77),(108,99),(108,113),(109,68),(109,107),(109,108),(110,66),(110,91),(110,117),(111,71),(111,89),(112,70),(112,119),(113,62),(113,105),(114,67),(114,106),(114,115),(115,60),(115,96),(115,118),(116,65),(116,88),(116,104),(117,63),(117,103),(117,114),(118,64),(118,119),(119,61),(119,116)],120)
=> ?
=> ?
=> ? = 52
Description
The side length of the Durfee square of an integer partition.
Given a partition $\lambda = (\lambda_1,\ldots,\lambda_n)$, the Durfee square is the largest partition $(s^s)$ whose diagram fits inside the diagram of $\lambda$. In symbols, $s = \max\{ i \mid \lambda_i \geq i \}$.
This is also known as the Frobenius rank.
Matching statistic: St000307
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
St000307: Posets ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 18%
St000307: Posets ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 18%
Values
['A',1]
=> ([],1)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ? = 3
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ? = 3
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ? = 4
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ? = 6
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ? = 6
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ? = 6
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ? = 8
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ? = 5
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ? = 7
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ? = 7
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ? = 7
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> ? = 7
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ? = 14
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ? = 14
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> ? = 13
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> ? = 12
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ? = 12
['B',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ? = 16
['C',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ? = 16
['D',7]
=> ([(0,34),(1,33),(2,27),(3,31),(3,37),(4,30),(4,31),(5,27),(5,30),(6,33),(6,34),(6,37),(8,26),(9,25),(10,14),(11,41),(12,41),(13,39),(14,7),(15,16),(16,14),(17,20),(17,39),(18,21),(18,39),(19,22),(20,23),(20,40),(21,24),(21,40),(22,29),(23,11),(23,38),(24,12),(24,38),(25,10),(25,16),(26,9),(26,32),(27,19),(28,22),(28,36),(29,11),(29,12),(30,19),(30,28),(31,28),(31,35),(32,15),(32,25),(33,13),(33,17),(34,13),(34,18),(35,20),(35,21),(35,36),(36,23),(36,24),(36,29),(37,17),(37,18),(37,35),(38,32),(38,41),(39,8),(39,40),(40,26),(40,38),(41,15)],42)
=> ? = 16
['E',7]
=> ([(0,49),(1,40),(2,41),(3,40),(3,46),(4,46),(4,52),(5,41),(5,51),(6,49),(6,51),(6,52),(7,9),(9,8),(10,48),(11,39),(12,24),(13,14),(13,47),(14,27),(15,22),(15,34),(16,23),(16,33),(17,60),(18,57),(19,56),(20,58),(21,13),(21,58),(22,11),(22,62),(23,10),(23,61),(24,7),(25,38),(26,24),(27,26),(28,17),(28,59),(29,28),(29,53),(30,42),(31,19),(31,53),(32,18),(32,60),(33,15),(33,35),(33,61),(34,21),(34,62),(35,22),(35,54),(36,37),(36,56),(37,18),(37,55),(38,12),(38,26),(39,25),(40,30),(41,45),(42,17),(42,32),(43,36),(43,44),(43,53),(44,32),(44,37),(44,59),(45,19),(45,36),(46,30),(46,50),(47,27),(47,38),(48,20),(48,21),(49,29),(49,31),(50,28),(50,42),(50,44),(51,31),(51,43),(51,45),(52,29),(52,43),(52,50),(53,16),(53,56),(53,59),(54,20),(54,62),(55,57),(55,61),(56,23),(56,55),(57,54),(58,25),(58,47),(59,33),(59,55),(59,60),(60,35),(60,57),(61,34),(61,48),(61,54),(62,39),(62,58)],63)
=> ? = 22
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ? = 15
['B',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ? = 29
['C',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ? = 29
['D',8]
=> ([(0,41),(1,40),(2,34),(3,45),(3,46),(4,45),(4,50),(5,44),(5,46),(6,34),(6,44),(7,40),(7,41),(7,50),(9,33),(10,31),(11,32),(12,16),(13,53),(14,54),(15,54),(16,8),(17,16),(18,22),(18,53),(19,23),(19,53),(20,24),(21,25),(22,29),(22,55),(23,30),(23,55),(24,26),(25,17),(26,39),(27,14),(27,52),(28,15),(28,52),(29,27),(29,51),(30,28),(30,51),(31,11),(31,42),(32,9),(32,36),(33,12),(33,17),(34,20),(35,38),(35,49),(36,25),(36,33),(37,24),(37,38),(38,26),(38,47),(39,14),(39,15),(40,13),(40,18),(41,13),(41,19),(42,32),(42,43),(43,21),(43,36),(44,20),(44,37),(45,35),(45,48),(46,35),(46,37),(47,27),(47,28),(47,39),(48,22),(48,23),(48,49),(49,29),(49,30),(49,47),(50,18),(50,19),(50,48),(51,42),(51,52),(52,43),(52,54),(53,10),(53,55),(54,21),(55,31),(55,51)],56)
=> ? = 30
['E',8]
=> ([(0,86),(1,74),(2,75),(3,93),(3,98),(4,92),(4,93),(5,74),(5,97),(6,75),(6,92),(7,86),(7,97),(7,98),(8,12),(10,11),(11,9),(12,10),(13,73),(14,91),(15,24),(15,90),(16,71),(17,70),(18,40),(19,21),(19,72),(20,23),(20,96),(21,46),(22,52),(23,84),(24,22),(24,79),(25,57),(25,66),(26,36),(26,65),(27,39),(27,68),(28,38),(28,67),(29,118),(30,100),(31,104),(32,105),(33,111),(34,113),(35,20),(35,115),(36,15),(36,101),(37,16),(37,111),(38,17),(38,112),(39,14),(39,110),(40,8),(41,55),(41,107),(42,58),(42,102),(43,34),(43,108),(44,72),(45,38),(45,106),(46,40),(47,53),(48,36),(48,104),(49,50),(50,44),(51,41),(51,100),(52,49),(53,76),(54,30),(54,102),(55,32),(55,99),(56,26),(56,48),(56,116),(57,28),(57,45),(57,114),(58,43),(58,109),(59,32),(59,113),(60,56),(60,119),(61,88),(62,45),(62,103),(63,29),(63,115),(64,31),(64,116),(65,37),(65,101),(66,35),(66,114),(67,60),(67,112),(68,25),(68,77),(68,110),(69,13),(69,83),(70,61),(71,69),(72,18),(72,46),(73,19),(73,44),(74,85),(75,47),(76,34),(76,59),(77,57),(77,62),(77,117),(78,55),(78,59),(78,108),(79,52),(79,82),(80,51),(80,87),(80,102),(81,53),(81,95),(82,49),(82,83),(83,50),(83,73),(84,31),(84,48),(85,30),(85,51),(86,42),(86,54),(87,41),(87,78),(87,109),(88,33),(88,37),(89,69),(89,82),(90,79),(90,89),(91,35),(91,63),(92,47),(92,81),(93,81),(93,94),(94,58),(94,87),(94,95),(95,43),(95,76),(95,78),(96,56),(96,64),(96,84),(97,54),(97,80),(97,85),(98,42),(98,80),(98,94),(99,105),(99,117),(100,39),(100,107),(101,90),(101,111),(102,27),(102,100),(102,109),(103,29),(103,106),(104,33),(104,101),(105,103),(106,112),(106,118),(107,99),(107,110),(108,77),(108,99),(108,113),(109,68),(109,107),(109,108),(110,66),(110,91),(110,117),(111,71),(111,89),(112,70),(112,119),(113,62),(113,105),(114,67),(114,106),(114,115),(115,60),(115,96),(115,118),(116,65),(116,88),(116,104),(117,63),(117,103),(117,114),(118,64),(118,119),(119,61),(119,116)],120)
=> ? = 52
Description
The number of rowmotion orbits of a poset.
Rowmotion is an operation on order ideals in a poset $P$. It sends an order ideal $I$ to the order ideal generated by the minimal antichain of $P \setminus I$.
Matching statistic: St000632
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
St000632: Posets ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 18%
St000632: Posets ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 18%
Values
['A',1]
=> ([],1)
=> 0 = 1 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> 1 = 2 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> 1 = 2 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ? = 3 - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ? = 3 - 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ? = 4 - 1
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ? = 6 - 1
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ? = 6 - 1
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ? = 6 - 1
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ? = 8 - 1
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ? = 5 - 1
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ? = 7 - 1
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ? = 7 - 1
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ? = 7 - 1
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> ? = 7 - 1
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ? = 14 - 1
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ? = 14 - 1
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> ? = 13 - 1
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> ? = 12 - 1
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ? = 12 - 1
['B',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ? = 16 - 1
['C',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ? = 16 - 1
['D',7]
=> ([(0,34),(1,33),(2,27),(3,31),(3,37),(4,30),(4,31),(5,27),(5,30),(6,33),(6,34),(6,37),(8,26),(9,25),(10,14),(11,41),(12,41),(13,39),(14,7),(15,16),(16,14),(17,20),(17,39),(18,21),(18,39),(19,22),(20,23),(20,40),(21,24),(21,40),(22,29),(23,11),(23,38),(24,12),(24,38),(25,10),(25,16),(26,9),(26,32),(27,19),(28,22),(28,36),(29,11),(29,12),(30,19),(30,28),(31,28),(31,35),(32,15),(32,25),(33,13),(33,17),(34,13),(34,18),(35,20),(35,21),(35,36),(36,23),(36,24),(36,29),(37,17),(37,18),(37,35),(38,32),(38,41),(39,8),(39,40),(40,26),(40,38),(41,15)],42)
=> ? = 16 - 1
['E',7]
=> ([(0,49),(1,40),(2,41),(3,40),(3,46),(4,46),(4,52),(5,41),(5,51),(6,49),(6,51),(6,52),(7,9),(9,8),(10,48),(11,39),(12,24),(13,14),(13,47),(14,27),(15,22),(15,34),(16,23),(16,33),(17,60),(18,57),(19,56),(20,58),(21,13),(21,58),(22,11),(22,62),(23,10),(23,61),(24,7),(25,38),(26,24),(27,26),(28,17),(28,59),(29,28),(29,53),(30,42),(31,19),(31,53),(32,18),(32,60),(33,15),(33,35),(33,61),(34,21),(34,62),(35,22),(35,54),(36,37),(36,56),(37,18),(37,55),(38,12),(38,26),(39,25),(40,30),(41,45),(42,17),(42,32),(43,36),(43,44),(43,53),(44,32),(44,37),(44,59),(45,19),(45,36),(46,30),(46,50),(47,27),(47,38),(48,20),(48,21),(49,29),(49,31),(50,28),(50,42),(50,44),(51,31),(51,43),(51,45),(52,29),(52,43),(52,50),(53,16),(53,56),(53,59),(54,20),(54,62),(55,57),(55,61),(56,23),(56,55),(57,54),(58,25),(58,47),(59,33),(59,55),(59,60),(60,35),(60,57),(61,34),(61,48),(61,54),(62,39),(62,58)],63)
=> ? = 22 - 1
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ? = 15 - 1
['B',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ? = 29 - 1
['C',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ? = 29 - 1
['D',8]
=> ([(0,41),(1,40),(2,34),(3,45),(3,46),(4,45),(4,50),(5,44),(5,46),(6,34),(6,44),(7,40),(7,41),(7,50),(9,33),(10,31),(11,32),(12,16),(13,53),(14,54),(15,54),(16,8),(17,16),(18,22),(18,53),(19,23),(19,53),(20,24),(21,25),(22,29),(22,55),(23,30),(23,55),(24,26),(25,17),(26,39),(27,14),(27,52),(28,15),(28,52),(29,27),(29,51),(30,28),(30,51),(31,11),(31,42),(32,9),(32,36),(33,12),(33,17),(34,20),(35,38),(35,49),(36,25),(36,33),(37,24),(37,38),(38,26),(38,47),(39,14),(39,15),(40,13),(40,18),(41,13),(41,19),(42,32),(42,43),(43,21),(43,36),(44,20),(44,37),(45,35),(45,48),(46,35),(46,37),(47,27),(47,28),(47,39),(48,22),(48,23),(48,49),(49,29),(49,30),(49,47),(50,18),(50,19),(50,48),(51,42),(51,52),(52,43),(52,54),(53,10),(53,55),(54,21),(55,31),(55,51)],56)
=> ? = 30 - 1
['E',8]
=> ([(0,86),(1,74),(2,75),(3,93),(3,98),(4,92),(4,93),(5,74),(5,97),(6,75),(6,92),(7,86),(7,97),(7,98),(8,12),(10,11),(11,9),(12,10),(13,73),(14,91),(15,24),(15,90),(16,71),(17,70),(18,40),(19,21),(19,72),(20,23),(20,96),(21,46),(22,52),(23,84),(24,22),(24,79),(25,57),(25,66),(26,36),(26,65),(27,39),(27,68),(28,38),(28,67),(29,118),(30,100),(31,104),(32,105),(33,111),(34,113),(35,20),(35,115),(36,15),(36,101),(37,16),(37,111),(38,17),(38,112),(39,14),(39,110),(40,8),(41,55),(41,107),(42,58),(42,102),(43,34),(43,108),(44,72),(45,38),(45,106),(46,40),(47,53),(48,36),(48,104),(49,50),(50,44),(51,41),(51,100),(52,49),(53,76),(54,30),(54,102),(55,32),(55,99),(56,26),(56,48),(56,116),(57,28),(57,45),(57,114),(58,43),(58,109),(59,32),(59,113),(60,56),(60,119),(61,88),(62,45),(62,103),(63,29),(63,115),(64,31),(64,116),(65,37),(65,101),(66,35),(66,114),(67,60),(67,112),(68,25),(68,77),(68,110),(69,13),(69,83),(70,61),(71,69),(72,18),(72,46),(73,19),(73,44),(74,85),(75,47),(76,34),(76,59),(77,57),(77,62),(77,117),(78,55),(78,59),(78,108),(79,52),(79,82),(80,51),(80,87),(80,102),(81,53),(81,95),(82,49),(82,83),(83,50),(83,73),(84,31),(84,48),(85,30),(85,51),(86,42),(86,54),(87,41),(87,78),(87,109),(88,33),(88,37),(89,69),(89,82),(90,79),(90,89),(91,35),(91,63),(92,47),(92,81),(93,81),(93,94),(94,58),(94,87),(94,95),(95,43),(95,76),(95,78),(96,56),(96,64),(96,84),(97,54),(97,80),(97,85),(98,42),(98,80),(98,94),(99,105),(99,117),(100,39),(100,107),(101,90),(101,111),(102,27),(102,100),(102,109),(103,29),(103,106),(104,33),(104,101),(105,103),(106,112),(106,118),(107,99),(107,110),(108,77),(108,99),(108,113),(109,68),(109,107),(109,108),(110,66),(110,91),(110,117),(111,71),(111,89),(112,70),(112,119),(113,62),(113,105),(114,67),(114,106),(114,115),(115,60),(115,96),(115,118),(116,65),(116,88),(116,104),(117,63),(117,103),(117,114),(118,64),(118,119),(119,61),(119,116)],120)
=> ? = 52 - 1
Description
The jump number of the poset.
A jump in a linear extension $e_1, \dots, e_n$ of a poset $P$ is a pair $(e_i, e_{i+1})$ so that $e_{i+1}$ does not cover $e_i$ in $P$. The jump number of a poset is the minimal number of jumps in linear extensions of a poset.
Matching statistic: St000845
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
St000845: Posets ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 18%
St000845: Posets ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 18%
Values
['A',1]
=> ([],1)
=> 0 = 1 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> 1 = 2 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> 1 = 2 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ? = 3 - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ? = 3 - 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ? = 4 - 1
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ? = 6 - 1
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ? = 6 - 1
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ? = 6 - 1
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ? = 8 - 1
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ? = 5 - 1
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ? = 7 - 1
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ? = 7 - 1
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ? = 7 - 1
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> ? = 7 - 1
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ? = 14 - 1
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ? = 14 - 1
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> ? = 13 - 1
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> ? = 12 - 1
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ? = 12 - 1
['B',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ? = 16 - 1
['C',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ? = 16 - 1
['D',7]
=> ([(0,34),(1,33),(2,27),(3,31),(3,37),(4,30),(4,31),(5,27),(5,30),(6,33),(6,34),(6,37),(8,26),(9,25),(10,14),(11,41),(12,41),(13,39),(14,7),(15,16),(16,14),(17,20),(17,39),(18,21),(18,39),(19,22),(20,23),(20,40),(21,24),(21,40),(22,29),(23,11),(23,38),(24,12),(24,38),(25,10),(25,16),(26,9),(26,32),(27,19),(28,22),(28,36),(29,11),(29,12),(30,19),(30,28),(31,28),(31,35),(32,15),(32,25),(33,13),(33,17),(34,13),(34,18),(35,20),(35,21),(35,36),(36,23),(36,24),(36,29),(37,17),(37,18),(37,35),(38,32),(38,41),(39,8),(39,40),(40,26),(40,38),(41,15)],42)
=> ? = 16 - 1
['E',7]
=> ([(0,49),(1,40),(2,41),(3,40),(3,46),(4,46),(4,52),(5,41),(5,51),(6,49),(6,51),(6,52),(7,9),(9,8),(10,48),(11,39),(12,24),(13,14),(13,47),(14,27),(15,22),(15,34),(16,23),(16,33),(17,60),(18,57),(19,56),(20,58),(21,13),(21,58),(22,11),(22,62),(23,10),(23,61),(24,7),(25,38),(26,24),(27,26),(28,17),(28,59),(29,28),(29,53),(30,42),(31,19),(31,53),(32,18),(32,60),(33,15),(33,35),(33,61),(34,21),(34,62),(35,22),(35,54),(36,37),(36,56),(37,18),(37,55),(38,12),(38,26),(39,25),(40,30),(41,45),(42,17),(42,32),(43,36),(43,44),(43,53),(44,32),(44,37),(44,59),(45,19),(45,36),(46,30),(46,50),(47,27),(47,38),(48,20),(48,21),(49,29),(49,31),(50,28),(50,42),(50,44),(51,31),(51,43),(51,45),(52,29),(52,43),(52,50),(53,16),(53,56),(53,59),(54,20),(54,62),(55,57),(55,61),(56,23),(56,55),(57,54),(58,25),(58,47),(59,33),(59,55),(59,60),(60,35),(60,57),(61,34),(61,48),(61,54),(62,39),(62,58)],63)
=> ? = 22 - 1
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ? = 15 - 1
['B',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ? = 29 - 1
['C',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ? = 29 - 1
['D',8]
=> ([(0,41),(1,40),(2,34),(3,45),(3,46),(4,45),(4,50),(5,44),(5,46),(6,34),(6,44),(7,40),(7,41),(7,50),(9,33),(10,31),(11,32),(12,16),(13,53),(14,54),(15,54),(16,8),(17,16),(18,22),(18,53),(19,23),(19,53),(20,24),(21,25),(22,29),(22,55),(23,30),(23,55),(24,26),(25,17),(26,39),(27,14),(27,52),(28,15),(28,52),(29,27),(29,51),(30,28),(30,51),(31,11),(31,42),(32,9),(32,36),(33,12),(33,17),(34,20),(35,38),(35,49),(36,25),(36,33),(37,24),(37,38),(38,26),(38,47),(39,14),(39,15),(40,13),(40,18),(41,13),(41,19),(42,32),(42,43),(43,21),(43,36),(44,20),(44,37),(45,35),(45,48),(46,35),(46,37),(47,27),(47,28),(47,39),(48,22),(48,23),(48,49),(49,29),(49,30),(49,47),(50,18),(50,19),(50,48),(51,42),(51,52),(52,43),(52,54),(53,10),(53,55),(54,21),(55,31),(55,51)],56)
=> ? = 30 - 1
['E',8]
=> ([(0,86),(1,74),(2,75),(3,93),(3,98),(4,92),(4,93),(5,74),(5,97),(6,75),(6,92),(7,86),(7,97),(7,98),(8,12),(10,11),(11,9),(12,10),(13,73),(14,91),(15,24),(15,90),(16,71),(17,70),(18,40),(19,21),(19,72),(20,23),(20,96),(21,46),(22,52),(23,84),(24,22),(24,79),(25,57),(25,66),(26,36),(26,65),(27,39),(27,68),(28,38),(28,67),(29,118),(30,100),(31,104),(32,105),(33,111),(34,113),(35,20),(35,115),(36,15),(36,101),(37,16),(37,111),(38,17),(38,112),(39,14),(39,110),(40,8),(41,55),(41,107),(42,58),(42,102),(43,34),(43,108),(44,72),(45,38),(45,106),(46,40),(47,53),(48,36),(48,104),(49,50),(50,44),(51,41),(51,100),(52,49),(53,76),(54,30),(54,102),(55,32),(55,99),(56,26),(56,48),(56,116),(57,28),(57,45),(57,114),(58,43),(58,109),(59,32),(59,113),(60,56),(60,119),(61,88),(62,45),(62,103),(63,29),(63,115),(64,31),(64,116),(65,37),(65,101),(66,35),(66,114),(67,60),(67,112),(68,25),(68,77),(68,110),(69,13),(69,83),(70,61),(71,69),(72,18),(72,46),(73,19),(73,44),(74,85),(75,47),(76,34),(76,59),(77,57),(77,62),(77,117),(78,55),(78,59),(78,108),(79,52),(79,82),(80,51),(80,87),(80,102),(81,53),(81,95),(82,49),(82,83),(83,50),(83,73),(84,31),(84,48),(85,30),(85,51),(86,42),(86,54),(87,41),(87,78),(87,109),(88,33),(88,37),(89,69),(89,82),(90,79),(90,89),(91,35),(91,63),(92,47),(92,81),(93,81),(93,94),(94,58),(94,87),(94,95),(95,43),(95,76),(95,78),(96,56),(96,64),(96,84),(97,54),(97,80),(97,85),(98,42),(98,80),(98,94),(99,105),(99,117),(100,39),(100,107),(101,90),(101,111),(102,27),(102,100),(102,109),(103,29),(103,106),(104,33),(104,101),(105,103),(106,112),(106,118),(107,99),(107,110),(108,77),(108,99),(108,113),(109,68),(109,107),(109,108),(110,66),(110,91),(110,117),(111,71),(111,89),(112,70),(112,119),(113,62),(113,105),(114,67),(114,106),(114,115),(115,60),(115,96),(115,118),(116,65),(116,88),(116,104),(117,63),(117,103),(117,114),(118,64),(118,119),(119,61),(119,116)],120)
=> ? = 52 - 1
Description
The maximal number of elements covered by an element in a poset.
Matching statistic: St001942
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
St001942: Posets ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 18%
St001942: Posets ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 18%
Values
['A',1]
=> ([],1)
=> 0 = 1 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> 1 = 2 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> 1 = 2 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ? = 3 - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ? = 3 - 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ? = 4 - 1
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ? = 6 - 1
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ? = 6 - 1
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ? = 6 - 1
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ? = 8 - 1
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ? = 5 - 1
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ? = 7 - 1
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ? = 7 - 1
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ? = 7 - 1
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> ? = 7 - 1
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ? = 14 - 1
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ? = 14 - 1
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> ? = 13 - 1
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> ? = 12 - 1
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ? = 12 - 1
['B',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ? = 16 - 1
['C',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ? = 16 - 1
['D',7]
=> ([(0,34),(1,33),(2,27),(3,31),(3,37),(4,30),(4,31),(5,27),(5,30),(6,33),(6,34),(6,37),(8,26),(9,25),(10,14),(11,41),(12,41),(13,39),(14,7),(15,16),(16,14),(17,20),(17,39),(18,21),(18,39),(19,22),(20,23),(20,40),(21,24),(21,40),(22,29),(23,11),(23,38),(24,12),(24,38),(25,10),(25,16),(26,9),(26,32),(27,19),(28,22),(28,36),(29,11),(29,12),(30,19),(30,28),(31,28),(31,35),(32,15),(32,25),(33,13),(33,17),(34,13),(34,18),(35,20),(35,21),(35,36),(36,23),(36,24),(36,29),(37,17),(37,18),(37,35),(38,32),(38,41),(39,8),(39,40),(40,26),(40,38),(41,15)],42)
=> ? = 16 - 1
['E',7]
=> ([(0,49),(1,40),(2,41),(3,40),(3,46),(4,46),(4,52),(5,41),(5,51),(6,49),(6,51),(6,52),(7,9),(9,8),(10,48),(11,39),(12,24),(13,14),(13,47),(14,27),(15,22),(15,34),(16,23),(16,33),(17,60),(18,57),(19,56),(20,58),(21,13),(21,58),(22,11),(22,62),(23,10),(23,61),(24,7),(25,38),(26,24),(27,26),(28,17),(28,59),(29,28),(29,53),(30,42),(31,19),(31,53),(32,18),(32,60),(33,15),(33,35),(33,61),(34,21),(34,62),(35,22),(35,54),(36,37),(36,56),(37,18),(37,55),(38,12),(38,26),(39,25),(40,30),(41,45),(42,17),(42,32),(43,36),(43,44),(43,53),(44,32),(44,37),(44,59),(45,19),(45,36),(46,30),(46,50),(47,27),(47,38),(48,20),(48,21),(49,29),(49,31),(50,28),(50,42),(50,44),(51,31),(51,43),(51,45),(52,29),(52,43),(52,50),(53,16),(53,56),(53,59),(54,20),(54,62),(55,57),(55,61),(56,23),(56,55),(57,54),(58,25),(58,47),(59,33),(59,55),(59,60),(60,35),(60,57),(61,34),(61,48),(61,54),(62,39),(62,58)],63)
=> ? = 22 - 1
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ? = 15 - 1
['B',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ? = 29 - 1
['C',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ? = 29 - 1
['D',8]
=> ([(0,41),(1,40),(2,34),(3,45),(3,46),(4,45),(4,50),(5,44),(5,46),(6,34),(6,44),(7,40),(7,41),(7,50),(9,33),(10,31),(11,32),(12,16),(13,53),(14,54),(15,54),(16,8),(17,16),(18,22),(18,53),(19,23),(19,53),(20,24),(21,25),(22,29),(22,55),(23,30),(23,55),(24,26),(25,17),(26,39),(27,14),(27,52),(28,15),(28,52),(29,27),(29,51),(30,28),(30,51),(31,11),(31,42),(32,9),(32,36),(33,12),(33,17),(34,20),(35,38),(35,49),(36,25),(36,33),(37,24),(37,38),(38,26),(38,47),(39,14),(39,15),(40,13),(40,18),(41,13),(41,19),(42,32),(42,43),(43,21),(43,36),(44,20),(44,37),(45,35),(45,48),(46,35),(46,37),(47,27),(47,28),(47,39),(48,22),(48,23),(48,49),(49,29),(49,30),(49,47),(50,18),(50,19),(50,48),(51,42),(51,52),(52,43),(52,54),(53,10),(53,55),(54,21),(55,31),(55,51)],56)
=> ? = 30 - 1
['E',8]
=> ([(0,86),(1,74),(2,75),(3,93),(3,98),(4,92),(4,93),(5,74),(5,97),(6,75),(6,92),(7,86),(7,97),(7,98),(8,12),(10,11),(11,9),(12,10),(13,73),(14,91),(15,24),(15,90),(16,71),(17,70),(18,40),(19,21),(19,72),(20,23),(20,96),(21,46),(22,52),(23,84),(24,22),(24,79),(25,57),(25,66),(26,36),(26,65),(27,39),(27,68),(28,38),(28,67),(29,118),(30,100),(31,104),(32,105),(33,111),(34,113),(35,20),(35,115),(36,15),(36,101),(37,16),(37,111),(38,17),(38,112),(39,14),(39,110),(40,8),(41,55),(41,107),(42,58),(42,102),(43,34),(43,108),(44,72),(45,38),(45,106),(46,40),(47,53),(48,36),(48,104),(49,50),(50,44),(51,41),(51,100),(52,49),(53,76),(54,30),(54,102),(55,32),(55,99),(56,26),(56,48),(56,116),(57,28),(57,45),(57,114),(58,43),(58,109),(59,32),(59,113),(60,56),(60,119),(61,88),(62,45),(62,103),(63,29),(63,115),(64,31),(64,116),(65,37),(65,101),(66,35),(66,114),(67,60),(67,112),(68,25),(68,77),(68,110),(69,13),(69,83),(70,61),(71,69),(72,18),(72,46),(73,19),(73,44),(74,85),(75,47),(76,34),(76,59),(77,57),(77,62),(77,117),(78,55),(78,59),(78,108),(79,52),(79,82),(80,51),(80,87),(80,102),(81,53),(81,95),(82,49),(82,83),(83,50),(83,73),(84,31),(84,48),(85,30),(85,51),(86,42),(86,54),(87,41),(87,78),(87,109),(88,33),(88,37),(89,69),(89,82),(90,79),(90,89),(91,35),(91,63),(92,47),(92,81),(93,81),(93,94),(94,58),(94,87),(94,95),(95,43),(95,76),(95,78),(96,56),(96,64),(96,84),(97,54),(97,80),(97,85),(98,42),(98,80),(98,94),(99,105),(99,117),(100,39),(100,107),(101,90),(101,111),(102,27),(102,100),(102,109),(103,29),(103,106),(104,33),(104,101),(105,103),(106,112),(106,118),(107,99),(107,110),(108,77),(108,99),(108,113),(109,68),(109,107),(109,108),(110,66),(110,91),(110,117),(111,71),(111,89),(112,70),(112,119),(113,62),(113,105),(114,67),(114,106),(114,115),(115,60),(115,96),(115,118),(116,65),(116,88),(116,104),(117,63),(117,103),(117,114),(118,64),(118,119),(119,61),(119,116)],120)
=> ? = 52 - 1
Description
The number of loops of the quiver corresponding to the reduced incidence algebra of a poset.
Matching statistic: St000010
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 18%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 18%
Values
['A',1]
=> ([],1)
=> [2]
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> 3
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? = 3
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? = 3
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [10,10,10,5,5,2]
=> ? = 4
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> ? = 6
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> ? = 6
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> [6,6,6,6,6,6,6,3,3,2]
=> ? = 6
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [12,12,12,12,12,12,12,12,4,3,2]
=> ? = 8
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [12,12,12,12,12,12,12,12,12,6,6,6,4,2]
=> ? = 5
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> ? = 7
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> ? = 7
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [16,16,16,16,16,16,16,8,8,8,8,8,8,8,8,4,2]
=> ? = 7
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> [14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,7,7,7,7,7,2]
=> ? = 7
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ?
=> ? = 14
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ?
=> ? = 14
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> ?
=> ? = 13
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> ?
=> ? = 12
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ?
=> ? = 12
['B',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ? = 16
['C',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ? = 16
['D',7]
=> ([(0,34),(1,33),(2,27),(3,31),(3,37),(4,30),(4,31),(5,27),(5,30),(6,33),(6,34),(6,37),(8,26),(9,25),(10,14),(11,41),(12,41),(13,39),(14,7),(15,16),(16,14),(17,20),(17,39),(18,21),(18,39),(19,22),(20,23),(20,40),(21,24),(21,40),(22,29),(23,11),(23,38),(24,12),(24,38),(25,10),(25,16),(26,9),(26,32),(27,19),(28,22),(28,36),(29,11),(29,12),(30,19),(30,28),(31,28),(31,35),(32,15),(32,25),(33,13),(33,17),(34,13),(34,18),(35,20),(35,21),(35,36),(36,23),(36,24),(36,29),(37,17),(37,18),(37,35),(38,32),(38,41),(39,8),(39,40),(40,26),(40,38),(41,15)],42)
=> ?
=> ? = 16
['E',7]
=> ([(0,49),(1,40),(2,41),(3,40),(3,46),(4,46),(4,52),(5,41),(5,51),(6,49),(6,51),(6,52),(7,9),(9,8),(10,48),(11,39),(12,24),(13,14),(13,47),(14,27),(15,22),(15,34),(16,23),(16,33),(17,60),(18,57),(19,56),(20,58),(21,13),(21,58),(22,11),(22,62),(23,10),(23,61),(24,7),(25,38),(26,24),(27,26),(28,17),(28,59),(29,28),(29,53),(30,42),(31,19),(31,53),(32,18),(32,60),(33,15),(33,35),(33,61),(34,21),(34,62),(35,22),(35,54),(36,37),(36,56),(37,18),(37,55),(38,12),(38,26),(39,25),(40,30),(41,45),(42,17),(42,32),(43,36),(43,44),(43,53),(44,32),(44,37),(44,59),(45,19),(45,36),(46,30),(46,50),(47,27),(47,38),(48,20),(48,21),(49,29),(49,31),(50,28),(50,42),(50,44),(51,31),(51,43),(51,45),(52,29),(52,43),(52,50),(53,16),(53,56),(53,59),(54,20),(54,62),(55,57),(55,61),(56,23),(56,55),(57,54),(58,25),(58,47),(59,33),(59,55),(59,60),(60,35),(60,57),(61,34),(61,48),(61,54),(62,39),(62,58)],63)
=> ?
=> ? = 22
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ?
=> ? = 15
['B',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ? = 29
['C',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ? = 29
['D',8]
=> ([(0,41),(1,40),(2,34),(3,45),(3,46),(4,45),(4,50),(5,44),(5,46),(6,34),(6,44),(7,40),(7,41),(7,50),(9,33),(10,31),(11,32),(12,16),(13,53),(14,54),(15,54),(16,8),(17,16),(18,22),(18,53),(19,23),(19,53),(20,24),(21,25),(22,29),(22,55),(23,30),(23,55),(24,26),(25,17),(26,39),(27,14),(27,52),(28,15),(28,52),(29,27),(29,51),(30,28),(30,51),(31,11),(31,42),(32,9),(32,36),(33,12),(33,17),(34,20),(35,38),(35,49),(36,25),(36,33),(37,24),(37,38),(38,26),(38,47),(39,14),(39,15),(40,13),(40,18),(41,13),(41,19),(42,32),(42,43),(43,21),(43,36),(44,20),(44,37),(45,35),(45,48),(46,35),(46,37),(47,27),(47,28),(47,39),(48,22),(48,23),(48,49),(49,29),(49,30),(49,47),(50,18),(50,19),(50,48),(51,42),(51,52),(52,43),(52,54),(53,10),(53,55),(54,21),(55,31),(55,51)],56)
=> ?
=> ? = 30
['E',8]
=> ([(0,86),(1,74),(2,75),(3,93),(3,98),(4,92),(4,93),(5,74),(5,97),(6,75),(6,92),(7,86),(7,97),(7,98),(8,12),(10,11),(11,9),(12,10),(13,73),(14,91),(15,24),(15,90),(16,71),(17,70),(18,40),(19,21),(19,72),(20,23),(20,96),(21,46),(22,52),(23,84),(24,22),(24,79),(25,57),(25,66),(26,36),(26,65),(27,39),(27,68),(28,38),(28,67),(29,118),(30,100),(31,104),(32,105),(33,111),(34,113),(35,20),(35,115),(36,15),(36,101),(37,16),(37,111),(38,17),(38,112),(39,14),(39,110),(40,8),(41,55),(41,107),(42,58),(42,102),(43,34),(43,108),(44,72),(45,38),(45,106),(46,40),(47,53),(48,36),(48,104),(49,50),(50,44),(51,41),(51,100),(52,49),(53,76),(54,30),(54,102),(55,32),(55,99),(56,26),(56,48),(56,116),(57,28),(57,45),(57,114),(58,43),(58,109),(59,32),(59,113),(60,56),(60,119),(61,88),(62,45),(62,103),(63,29),(63,115),(64,31),(64,116),(65,37),(65,101),(66,35),(66,114),(67,60),(67,112),(68,25),(68,77),(68,110),(69,13),(69,83),(70,61),(71,69),(72,18),(72,46),(73,19),(73,44),(74,85),(75,47),(76,34),(76,59),(77,57),(77,62),(77,117),(78,55),(78,59),(78,108),(79,52),(79,82),(80,51),(80,87),(80,102),(81,53),(81,95),(82,49),(82,83),(83,50),(83,73),(84,31),(84,48),(85,30),(85,51),(86,42),(86,54),(87,41),(87,78),(87,109),(88,33),(88,37),(89,69),(89,82),(90,79),(90,89),(91,35),(91,63),(92,47),(92,81),(93,81),(93,94),(94,58),(94,87),(94,95),(95,43),(95,76),(95,78),(96,56),(96,64),(96,84),(97,54),(97,80),(97,85),(98,42),(98,80),(98,94),(99,105),(99,117),(100,39),(100,107),(101,90),(101,111),(102,27),(102,100),(102,109),(103,29),(103,106),(104,33),(104,101),(105,103),(106,112),(106,118),(107,99),(107,110),(108,77),(108,99),(108,113),(109,68),(109,107),(109,108),(110,66),(110,91),(110,117),(111,71),(111,89),(112,70),(112,119),(113,62),(113,105),(114,67),(114,106),(114,115),(115,60),(115,96),(115,118),(116,65),(116,88),(116,104),(117,63),(117,103),(117,114),(118,64),(118,119),(119,61),(119,116)],120)
=> ?
=> ? = 52
Description
The length of the partition.
Matching statistic: St000172
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Values
['A',1]
=> ([],1)
=> ([],1)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ? = 4
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ? = 6
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ? = 6
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ? = 6
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(4,8),(5,20),(5,23),(6,7),(6,23),(7,8),(7,20),(8,23),(9,18),(9,19),(9,21),(9,22),(10,11),(10,18),(10,21),(10,22),(11,19),(11,21),(11,22),(12,15),(12,16),(12,17),(12,20),(12,23),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(14,15),(14,17),(14,18),(14,20),(14,21),(15,16),(15,19),(15,22),(15,23),(16,18),(16,20),(16,21),(17,18),(17,19),(17,21),(17,22),(18,19),(18,22),(18,23),(19,20),(19,21),(20,22),(20,23),(21,22),(21,23)],24)
=> ? = 8
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> ? = 5
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ? = 7
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ? = 7
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(2,5),(3,8),(3,9),(3,15),(3,18),(3,19),(4,7),(4,16),(4,17),(4,18),(4,19),(5,8),(5,9),(5,15),(5,18),(5,19),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(8,9),(8,11),(8,13),(8,14),(8,17),(9,10),(9,12),(9,14),(9,16),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(12,13),(12,15),(12,17),(12,18),(12,19),(13,15),(13,16),(13,18),(13,19),(14,15),(14,18),(14,19),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19)],20)
=> ? = 7
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> ([(1,2),(1,7),(1,16),(1,18),(1,20),(2,6),(2,15),(2,17),(2,19),(3,6),(3,7),(3,15),(3,16),(3,17),(3,18),(3,19),(3,20),(4,5),(4,11),(4,12),(4,14),(4,15),(4,17),(4,18),(4,19),(4,20),(5,11),(5,12),(5,13),(5,16),(5,17),(5,18),(5,19),(5,20),(6,7),(6,9),(6,11),(6,13),(6,16),(6,18),(6,20),(7,10),(7,12),(7,14),(7,15),(7,17),(7,19),(8,11),(8,12),(8,13),(8,14),(8,15),(8,16),(8,17),(8,18),(8,19),(8,20),(9,10),(9,12),(9,14),(9,15),(9,16),(9,17),(9,18),(9,19),(9,20),(10,11),(10,13),(10,15),(10,16),(10,17),(10,18),(10,19),(10,20),(11,12),(11,14),(11,15),(11,17),(11,19),(11,20),(12,13),(12,16),(12,18),(12,19),(12,20),(13,14),(13,15),(13,17),(13,18),(13,19),(13,20),(14,16),(14,17),(14,18),(14,19),(14,20),(15,16),(15,18),(15,20),(16,17),(16,19),(17,18),(17,20),(18,19),(19,20)],21)
=> ? = 7
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ([(2,8),(3,6),(3,8),(3,26),(4,5),(4,6),(4,8),(4,20),(4,26),(4,31),(5,10),(5,25),(5,26),(5,32),(5,33),(5,34),(5,35),(6,10),(6,25),(6,32),(6,33),(6,34),(6,35),(7,10),(7,20),(7,25),(7,26),(7,31),(7,32),(7,33),(7,34),(7,35),(8,10),(8,25),(8,32),(8,33),(8,34),(8,35),(9,12),(9,16),(9,22),(9,24),(9,28),(9,29),(9,30),(9,33),(9,34),(9,35),(10,15),(10,20),(10,23),(10,26),(10,30),(10,31),(11,15),(11,20),(11,23),(11,25),(11,26),(11,30),(11,31),(11,32),(11,33),(11,34),(11,35),(12,16),(12,17),(12,24),(12,27),(12,28),(12,29),(12,32),(12,33),(12,34),(12,35),(13,21),(13,23),(13,25),(13,27),(13,28),(13,29),(13,30),(13,31),(13,32),(13,33),(13,34),(13,35),(14,16),(14,17),(14,22),(14,24),(14,27),(14,28),(14,29),(14,30),(14,32),(14,33),(14,34),(14,35),(15,21),(15,25),(15,27),(15,28),(15,29),(15,31),(15,32),(15,33),(15,34),(15,35),(16,19),(16,22),(16,23),(16,24),(16,28),(16,30),(16,31),(16,34),(16,35),(17,19),(17,22),(17,23),(17,24),(17,28),(17,29),(17,30),(17,31),(17,33),(17,34),(17,35),(18,19),(18,22),(18,23),(18,24),(18,27),(18,28),(18,29),(18,30),(18,31),(18,32),(18,33),(18,34),(18,35),(19,21),(19,25),(19,27),(19,28),(19,29),(19,30),(19,32),(19,33),(19,34),(19,35),(20,21),(20,25),(20,27),(20,28),(20,29),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,24),(21,26),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,25),(22,27),(22,28),(22,29),(22,32),(22,33),(22,34),(22,35),(23,25),(23,27),(23,28),(23,29),(23,32),(23,33),(23,34),(23,35),(24,25),(24,27),(24,28),(24,29),(24,32),(24,33),(24,34),(24,35),(25,26),(25,30),(25,31),(26,27),(26,28),(26,29),(26,32),(26,33),(26,34),(26,35),(27,30),(27,31),(27,33),(27,34),(27,35),(28,30),(28,31),(28,35),(29,30),(29,31),(29,34),(29,35),(30,32),(30,33),(30,34),(30,35),(31,32),(31,33),(31,34),(31,35)],36)
=> ? = 14
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ([(2,8),(3,6),(3,8),(3,26),(4,5),(4,6),(4,8),(4,20),(4,26),(4,31),(5,10),(5,25),(5,26),(5,32),(5,33),(5,34),(5,35),(6,10),(6,25),(6,32),(6,33),(6,34),(6,35),(7,10),(7,20),(7,25),(7,26),(7,31),(7,32),(7,33),(7,34),(7,35),(8,10),(8,25),(8,32),(8,33),(8,34),(8,35),(9,12),(9,16),(9,22),(9,24),(9,28),(9,29),(9,30),(9,33),(9,34),(9,35),(10,15),(10,20),(10,23),(10,26),(10,30),(10,31),(11,15),(11,20),(11,23),(11,25),(11,26),(11,30),(11,31),(11,32),(11,33),(11,34),(11,35),(12,16),(12,17),(12,24),(12,27),(12,28),(12,29),(12,32),(12,33),(12,34),(12,35),(13,21),(13,23),(13,25),(13,27),(13,28),(13,29),(13,30),(13,31),(13,32),(13,33),(13,34),(13,35),(14,16),(14,17),(14,22),(14,24),(14,27),(14,28),(14,29),(14,30),(14,32),(14,33),(14,34),(14,35),(15,21),(15,25),(15,27),(15,28),(15,29),(15,31),(15,32),(15,33),(15,34),(15,35),(16,19),(16,22),(16,23),(16,24),(16,28),(16,30),(16,31),(16,34),(16,35),(17,19),(17,22),(17,23),(17,24),(17,28),(17,29),(17,30),(17,31),(17,33),(17,34),(17,35),(18,19),(18,22),(18,23),(18,24),(18,27),(18,28),(18,29),(18,30),(18,31),(18,32),(18,33),(18,34),(18,35),(19,21),(19,25),(19,27),(19,28),(19,29),(19,30),(19,32),(19,33),(19,34),(19,35),(20,21),(20,25),(20,27),(20,28),(20,29),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,24),(21,26),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,25),(22,27),(22,28),(22,29),(22,32),(22,33),(22,34),(22,35),(23,25),(23,27),(23,28),(23,29),(23,32),(23,33),(23,34),(23,35),(24,25),(24,27),(24,28),(24,29),(24,32),(24,33),(24,34),(24,35),(25,26),(25,30),(25,31),(26,27),(26,28),(26,29),(26,32),(26,33),(26,34),(26,35),(27,30),(27,31),(27,33),(27,34),(27,35),(28,30),(28,31),(28,35),(29,30),(29,31),(29,34),(29,35),(30,32),(30,33),(30,34),(30,35),(31,32),(31,33),(31,34),(31,35)],36)
=> ? = 14
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> ([(2,7),(3,5),(3,7),(3,20),(4,11),(4,12),(4,20),(4,23),(4,27),(4,28),(4,29),(5,11),(5,12),(5,23),(5,27),(5,28),(5,29),(6,8),(6,18),(6,19),(6,25),(6,26),(6,27),(6,28),(6,29),(7,11),(7,12),(7,23),(7,27),(7,28),(7,29),(8,19),(8,21),(8,22),(8,24),(8,25),(8,26),(8,28),(8,29),(9,18),(9,19),(9,21),(9,22),(9,24),(9,25),(9,26),(9,27),(9,28),(9,29),(10,11),(10,12),(10,13),(10,14),(10,15),(10,18),(10,19),(10,23),(10,27),(10,28),(10,29),(11,12),(11,15),(11,17),(11,20),(11,22),(11,24),(11,26),(12,14),(12,16),(12,20),(12,21),(12,24),(12,25),(13,16),(13,17),(13,20),(13,21),(13,22),(13,24),(13,25),(13,26),(13,27),(13,28),(13,29),(14,15),(14,17),(14,20),(14,22),(14,23),(14,24),(14,26),(14,27),(14,28),(14,29),(15,16),(15,20),(15,21),(15,23),(15,24),(15,25),(15,27),(15,28),(15,29),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(16,26),(16,27),(16,28),(16,29),(17,18),(17,19),(17,21),(17,23),(17,24),(17,25),(17,27),(17,28),(17,29),(18,20),(18,21),(18,22),(18,24),(18,25),(18,26),(18,28),(18,29),(19,20),(19,21),(19,22),(19,24),(19,25),(19,26),(19,29),(20,23),(20,27),(20,28),(20,29),(21,22),(21,23),(21,26),(21,27),(21,28),(21,29),(22,23),(22,25),(22,27),(22,28),(22,29),(23,24),(23,25),(23,26),(24,27),(24,28),(24,29),(25,26),(25,27),(25,28),(25,29),(26,27),(26,28),(26,29)],30)
=> ? = 13
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> ([(3,18),(3,19),(4,5),(4,19),(5,18),(6,10),(6,11),(6,18),(6,19),(6,24),(7,15),(7,16),(7,27),(7,32),(7,33),(7,34),(7,35),(8,9),(8,11),(8,18),(8,23),(8,24),(8,26),(8,29),(8,31),(8,33),(8,35),(9,10),(9,19),(9,23),(9,24),(9,25),(9,28),(9,30),(9,32),(9,34),(10,11),(10,18),(10,23),(10,26),(10,29),(10,31),(10,33),(10,35),(11,19),(11,23),(11,25),(11,28),(11,30),(11,32),(11,34),(12,23),(12,25),(12,26),(12,28),(12,29),(12,30),(12,31),(12,32),(12,33),(12,34),(12,35),(13,14),(13,16),(13,20),(13,22),(13,27),(13,28),(13,30),(13,32),(13,33),(13,34),(13,35),(14,15),(14,20),(14,21),(14,27),(14,29),(14,31),(14,32),(14,33),(14,34),(14,35),(15,16),(15,20),(15,22),(15,27),(15,28),(15,30),(15,32),(15,34),(15,35),(16,20),(16,21),(16,27),(16,29),(16,31),(16,33),(16,34),(16,35),(17,20),(17,21),(17,22),(17,27),(17,28),(17,29),(17,30),(17,31),(17,32),(17,33),(17,34),(17,35),(18,19),(18,23),(18,25),(18,28),(18,30),(18,32),(18,34),(19,23),(19,26),(19,29),(19,31),(19,33),(19,35),(20,23),(20,25),(20,26),(20,30),(20,31),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,25),(21,26),(21,28),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,23),(22,25),(22,26),(22,29),(22,30),(22,31),(22,32),(22,33),(22,34),(22,35),(23,24),(23,27),(23,28),(23,29),(24,25),(24,26),(24,28),(24,29),(24,30),(24,31),(24,32),(24,33),(24,34),(24,35),(25,26),(25,27),(25,28),(25,29),(25,31),(25,33),(25,35),(26,27),(26,28),(26,29),(26,30),(26,32),(26,34),(27,30),(27,31),(27,32),(27,33),(27,34),(27,35),(28,29),(28,31),(28,33),(28,35),(29,30),(29,32),(29,34),(30,31),(30,33),(30,35),(31,32),(31,34),(32,33),(32,35),(33,34),(34,35)],36)
=> ? = 12
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ?
=> ? = 12
['B',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ? = 16
['C',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ? = 16
['D',7]
=> ([(0,34),(1,33),(2,27),(3,31),(3,37),(4,30),(4,31),(5,27),(5,30),(6,33),(6,34),(6,37),(8,26),(9,25),(10,14),(11,41),(12,41),(13,39),(14,7),(15,16),(16,14),(17,20),(17,39),(18,21),(18,39),(19,22),(20,23),(20,40),(21,24),(21,40),(22,29),(23,11),(23,38),(24,12),(24,38),(25,10),(25,16),(26,9),(26,32),(27,19),(28,22),(28,36),(29,11),(29,12),(30,19),(30,28),(31,28),(31,35),(32,15),(32,25),(33,13),(33,17),(34,13),(34,18),(35,20),(35,21),(35,36),(36,23),(36,24),(36,29),(37,17),(37,18),(37,35),(38,32),(38,41),(39,8),(39,40),(40,26),(40,38),(41,15)],42)
=> ?
=> ? = 16
['E',7]
=> ([(0,49),(1,40),(2,41),(3,40),(3,46),(4,46),(4,52),(5,41),(5,51),(6,49),(6,51),(6,52),(7,9),(9,8),(10,48),(11,39),(12,24),(13,14),(13,47),(14,27),(15,22),(15,34),(16,23),(16,33),(17,60),(18,57),(19,56),(20,58),(21,13),(21,58),(22,11),(22,62),(23,10),(23,61),(24,7),(25,38),(26,24),(27,26),(28,17),(28,59),(29,28),(29,53),(30,42),(31,19),(31,53),(32,18),(32,60),(33,15),(33,35),(33,61),(34,21),(34,62),(35,22),(35,54),(36,37),(36,56),(37,18),(37,55),(38,12),(38,26),(39,25),(40,30),(41,45),(42,17),(42,32),(43,36),(43,44),(43,53),(44,32),(44,37),(44,59),(45,19),(45,36),(46,30),(46,50),(47,27),(47,38),(48,20),(48,21),(49,29),(49,31),(50,28),(50,42),(50,44),(51,31),(51,43),(51,45),(52,29),(52,43),(52,50),(53,16),(53,56),(53,59),(54,20),(54,62),(55,57),(55,61),(56,23),(56,55),(57,54),(58,25),(58,47),(59,33),(59,55),(59,60),(60,35),(60,57),(61,34),(61,48),(61,54),(62,39),(62,58)],63)
=> ?
=> ? = 22
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ?
=> ? = 15
['B',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ? = 29
['C',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ? = 29
['D',8]
=> ([(0,41),(1,40),(2,34),(3,45),(3,46),(4,45),(4,50),(5,44),(5,46),(6,34),(6,44),(7,40),(7,41),(7,50),(9,33),(10,31),(11,32),(12,16),(13,53),(14,54),(15,54),(16,8),(17,16),(18,22),(18,53),(19,23),(19,53),(20,24),(21,25),(22,29),(22,55),(23,30),(23,55),(24,26),(25,17),(26,39),(27,14),(27,52),(28,15),(28,52),(29,27),(29,51),(30,28),(30,51),(31,11),(31,42),(32,9),(32,36),(33,12),(33,17),(34,20),(35,38),(35,49),(36,25),(36,33),(37,24),(37,38),(38,26),(38,47),(39,14),(39,15),(40,13),(40,18),(41,13),(41,19),(42,32),(42,43),(43,21),(43,36),(44,20),(44,37),(45,35),(45,48),(46,35),(46,37),(47,27),(47,28),(47,39),(48,22),(48,23),(48,49),(49,29),(49,30),(49,47),(50,18),(50,19),(50,48),(51,42),(51,52),(52,43),(52,54),(53,10),(53,55),(54,21),(55,31),(55,51)],56)
=> ?
=> ? = 30
['E',8]
=> ([(0,86),(1,74),(2,75),(3,93),(3,98),(4,92),(4,93),(5,74),(5,97),(6,75),(6,92),(7,86),(7,97),(7,98),(8,12),(10,11),(11,9),(12,10),(13,73),(14,91),(15,24),(15,90),(16,71),(17,70),(18,40),(19,21),(19,72),(20,23),(20,96),(21,46),(22,52),(23,84),(24,22),(24,79),(25,57),(25,66),(26,36),(26,65),(27,39),(27,68),(28,38),(28,67),(29,118),(30,100),(31,104),(32,105),(33,111),(34,113),(35,20),(35,115),(36,15),(36,101),(37,16),(37,111),(38,17),(38,112),(39,14),(39,110),(40,8),(41,55),(41,107),(42,58),(42,102),(43,34),(43,108),(44,72),(45,38),(45,106),(46,40),(47,53),(48,36),(48,104),(49,50),(50,44),(51,41),(51,100),(52,49),(53,76),(54,30),(54,102),(55,32),(55,99),(56,26),(56,48),(56,116),(57,28),(57,45),(57,114),(58,43),(58,109),(59,32),(59,113),(60,56),(60,119),(61,88),(62,45),(62,103),(63,29),(63,115),(64,31),(64,116),(65,37),(65,101),(66,35),(66,114),(67,60),(67,112),(68,25),(68,77),(68,110),(69,13),(69,83),(70,61),(71,69),(72,18),(72,46),(73,19),(73,44),(74,85),(75,47),(76,34),(76,59),(77,57),(77,62),(77,117),(78,55),(78,59),(78,108),(79,52),(79,82),(80,51),(80,87),(80,102),(81,53),(81,95),(82,49),(82,83),(83,50),(83,73),(84,31),(84,48),(85,30),(85,51),(86,42),(86,54),(87,41),(87,78),(87,109),(88,33),(88,37),(89,69),(89,82),(90,79),(90,89),(91,35),(91,63),(92,47),(92,81),(93,81),(93,94),(94,58),(94,87),(94,95),(95,43),(95,76),(95,78),(96,56),(96,64),(96,84),(97,54),(97,80),(97,85),(98,42),(98,80),(98,94),(99,105),(99,117),(100,39),(100,107),(101,90),(101,111),(102,27),(102,100),(102,109),(103,29),(103,106),(104,33),(104,101),(105,103),(106,112),(106,118),(107,99),(107,110),(108,77),(108,99),(108,113),(109,68),(109,107),(109,108),(110,66),(110,91),(110,117),(111,71),(111,89),(112,70),(112,119),(113,62),(113,105),(114,67),(114,106),(114,115),(115,60),(115,96),(115,118),(116,65),(116,88),(116,104),(117,63),(117,103),(117,114),(118,64),(118,119),(119,61),(119,116)],120)
=> ?
=> ? = 52
Description
The Grundy number of a graph.
The Grundy number $\Gamma(G)$ is defined to be the largest $k$ such that $G$ admits a greedy $k$-coloring. Any order of the vertices of $G$ induces a greedy coloring by assigning to the $i$-th vertex in this order the smallest positive integer such that the partial coloring remains a proper coloring.
In particular, we have that $\chi(G) \leq \Gamma(G) \leq \Delta(G) + 1$, where $\chi(G)$ is the chromatic number of $G$ ([[St000098]]), and where $\Delta(G)$ is the maximal degree of a vertex of $G$ ([[St000171]]).
The following 147 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000822The Hadwiger number of the graph. St001029The size of the core of a graph. St001116The game chromatic number of a graph. St001280The number of parts of an integer partition that are at least two. St001494The Alon-Tarsi number of a graph. St001580The acyclic chromatic number of a graph. St001581The achromatic number of a graph. St001670The connected partition number of a graph. St001674The number of vertices of the largest induced star graph in the graph. St001734The lettericity of a graph. St001883The mutual visibility number of a graph. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001951The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. St000272The treewidth of a graph. St000387The matching number of a graph. St000535The rank-width of a graph. St000536The pathwidth of a graph. St000846The maximal number of elements covering an element of a poset. St000985The number of positive eigenvalues of the adjacency matrix of the graph. St001270The bandwidth of a graph. St001271The competition number of a graph. St001277The degeneracy of a graph. St001358The largest degree of a regular subgraph of a graph. St001621The number of atoms of a lattice. St001689The number of celebrities in a graph. St001792The arboricity of a graph. St001812The biclique partition number of a graph. St001962The proper pathwidth of a graph. St000093The cardinality of a maximal independent set of vertices of a graph. St000147The largest part of an integer partition. St000258The burning number of a graph. St000273The domination number of a graph. St000443The number of long tunnels of a Dyck path. St000482The (zero)-forcing number of a graph. St000544The cop number of a graph. St000636The hull number of a graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St001057The Grundy value of the game of creating an independent set in a graph. St001108The 2-dynamic chromatic number of a graph. St001110The 3-dynamic chromatic number of a graph. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001261The Castelnuovo-Mumford regularity of a graph. St001322The size of a minimal independent dominating set in a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001339The irredundance number of a graph. St001366The maximal multiplicity of a degree of a vertex of a graph. St001367The smallest number which does not occur as degree of a vertex in a graph. St001368The number of vertices of maximal degree in a graph. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001642The Prague dimension of a graph. St001716The 1-improper chromatic number of a graph. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001829The common independence number of a graph. St001963The tree-depth of a graph. St000097The order of the largest clique of the graph. St000098The chromatic number of a graph. St000171The degree of the graph. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000362The size of a minimal vertex cover of a graph. St000778The metric dimension of a graph. St001093The detour number of a graph. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001194The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001323The independence gap of a graph. St001331The size of the minimal feedback vertex set. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001340The cardinality of a minimal non-edge isolating set of a graph. St001349The number of different graphs obtained from the given graph by removing an edge. St001393The induced matching number of a graph. St001395The number of strictly unfriendly partitions of a graph. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001574The minimal number of edges to add or remove to make a graph regular. St001576The minimal number of edges to add or remove to make a graph vertex transitive. St001742The difference of the maximal and the minimal degree in a graph. St001743The discrepancy of a graph. St001873For a Nakayama algebra corresponding to a Dyck path, we define the matrix C with entries the Hom-spaces between $e_i J$ and $e_j J$ (the radical of the indecomposable projective modules). St000640The rank of the largest boolean interval in a poset. St000850The number of 1/2-balanced pairs in a poset. St000146The Andrews-Garvan crank of a partition. St000159The number of distinct parts of the integer partition. St000278The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. St000346The number of coarsenings of a partition. St000473The number of parts of a partition that are strictly bigger than the number of ones. St000533The minimum of the number of parts and the size of the first part of an integer partition. St000783The side length of the largest staircase partition fitting into a partition. St000810The sum of the entries in the column specified by the partition of the change of basis matrix from powersum symmetric functions to monomial symmetric functions. St001330The hat guessing number of a graph. St001432The order dimension of the partition. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000318The number of addable cells of the Ferrers diagram of an integer partition. St000454The largest eigenvalue of a graph if it is integral. St000456The monochromatic index of a connected graph. St000481The number of upper covers of a partition in dominance order. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001592The maximal number of simple paths between any two different vertices of a graph. St001644The dimension of a graph. St000143The largest repeated part of a partition. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000668The least common multiple of the parts of the partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St001128The exponens consonantiae of a partition. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St000100The number of linear extensions of a poset. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000225Difference between largest and smallest parts in a partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000480The number of lower covers of a partition in dominance order. St000633The size of the automorphism group of a poset. St000744The length of the path to the largest entry in a standard Young tableau. St000759The smallest missing part in an integer partition. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001118The acyclic chromatic index of a graph. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001638The book thickness of a graph. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St000455The second largest eigenvalue of a graph if it is integral. St000477The weight of a partition according to Alladi. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001877Number of indecomposable injective modules with projective dimension 2. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000310The minimal degree of a vertex of a graph. St000450The number of edges minus the number of vertices plus 2 of a graph. St000741The Colin de Verdière graph invariant. St000095The number of triangles of a graph. St000286The number of connected components of the complement of a graph. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001575The minimal number of edges to add or remove to make a graph edge transitive.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!