searching the database
Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001757
Values
([],1)
=> 1
([],2)
=> 2
([(0,1)],2)
=> 2
([],3)
=> 3
([(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> 3
([(0,1),(0,2),(1,2)],3)
=> 6
([],4)
=> 8
([(2,3)],4)
=> 8
([(1,3),(2,3)],4)
=> 4
([(0,3),(1,3),(2,3)],4)
=> 8
([(0,3),(1,2)],4)
=> 8
([(0,3),(1,2),(2,3)],4)
=> 8
([(1,2),(1,3),(2,3)],4)
=> 4
([(0,3),(1,2),(1,3),(2,3)],4)
=> 8
([(0,2),(0,3),(1,2),(1,3)],4)
=> 16
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 16
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 24
([],5)
=> 30
([(3,4)],5)
=> 24
([(2,4),(3,4)],5)
=> 18
([(1,4),(2,4),(3,4)],5)
=> 12
([(0,4),(1,4),(2,4),(3,4)],5)
=> 30
([(1,4),(2,3)],5)
=> 18
([(1,4),(2,3),(3,4)],5)
=> 12
([(0,1),(2,4),(3,4)],5)
=> 12
([(2,3),(2,4),(3,4)],5)
=> 18
([(0,4),(1,4),(2,3),(3,4)],5)
=> 30
([(1,4),(2,3),(2,4),(3,4)],5)
=> 12
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 30
([(1,3),(1,4),(2,3),(2,4)],5)
=> 10
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 20
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 30
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 20
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 40
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 50
([(0,4),(1,3),(2,3),(2,4)],5)
=> 30
([(0,1),(2,3),(2,4),(3,4)],5)
=> 12
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 30
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 40
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 30
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 40
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 50
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 20
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 30
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 60
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 50
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 80
Description
The number of orbits of toric promotion on a graph.
Let $(V, E)$ be a graph with $n=|V|$ vertices, and let $\sigma: V \to [n]$ be a labelling of its vertices. Let
$
\tau_{i, j}(\sigma) =
\begin{cases}
\sigma & \text{if $\{\sigma^{-1}(i), \sigma^{-1}(j)\}\in E$}\\
(i, j)\circ\sigma & \text{otherwise}.
\end{cases}
$
The toric promotion operator is the product $\tau_{n,1}\tau_{n-1,n}\dots\tau_{1,2}$.
This statistic records the number of orbits in the orbit decomposition of toric promotion.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!