edit this statistic or download as text // json
Identifier
Values
=>
Cc0020;cc-rep
([],1)=>1 ([],2)=>2 ([(0,1)],2)=>2 ([],3)=>3 ([(1,2)],3)=>2 ([(0,2),(1,2)],3)=>3 ([(0,1),(0,2),(1,2)],3)=>6 ([],4)=>8 ([(2,3)],4)=>8 ([(1,3),(2,3)],4)=>4 ([(0,3),(1,3),(2,3)],4)=>8 ([(0,3),(1,2)],4)=>8 ([(0,3),(1,2),(2,3)],4)=>8 ([(1,2),(1,3),(2,3)],4)=>4 ([(0,3),(1,2),(1,3),(2,3)],4)=>8 ([(0,2),(0,3),(1,2),(1,3)],4)=>16 ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>16 ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>24 ([],5)=>30 ([(3,4)],5)=>24 ([(2,4),(3,4)],5)=>18 ([(1,4),(2,4),(3,4)],5)=>12 ([(0,4),(1,4),(2,4),(3,4)],5)=>30 ([(1,4),(2,3)],5)=>18 ([(1,4),(2,3),(3,4)],5)=>12 ([(0,1),(2,4),(3,4)],5)=>12 ([(2,3),(2,4),(3,4)],5)=>18 ([(0,4),(1,4),(2,3),(3,4)],5)=>30 ([(1,4),(2,3),(2,4),(3,4)],5)=>12 ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>30 ([(1,3),(1,4),(2,3),(2,4)],5)=>10 ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>20 ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>10 ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>30 ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>20 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>40 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>50 ([(0,4),(1,3),(2,3),(2,4)],5)=>30 ([(0,1),(2,3),(2,4),(3,4)],5)=>12 ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>30 ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>40 ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>30 ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>40 ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>50 ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>20 ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>12 ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>30 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>60 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>50 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>80 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>90 ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>120 ([],6)=>144 ([(4,5)],6)=>144 ([(3,5),(4,5)],6)=>144 ([(2,5),(3,5),(4,5)],6)=>96 ([(1,5),(2,5),(3,5),(4,5)],6)=>48 ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>144 ([(2,5),(3,4)],6)=>144 ([(2,5),(3,4),(4,5)],6)=>96 ([(1,2),(3,5),(4,5)],6)=>144 ([(3,4),(3,5),(4,5)],6)=>144 ([(1,5),(2,5),(3,4),(4,5)],6)=>48 ([(0,1),(2,5),(3,5),(4,5)],6)=>96 ([(2,5),(3,4),(3,5),(4,5)],6)=>96 ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>144 ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>48 ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>144 ([(2,4),(2,5),(3,4),(3,5)],6)=>80 ([(0,5),(1,5),(2,4),(3,4)],6)=>144 ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>48 ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>144 ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>80 ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>48 ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>144 ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>96 ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>48 ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>144 ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>48 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>96 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>96 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>48 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>240 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>240 ([(0,5),(1,4),(2,3)],6)=>144 ([(1,5),(2,4),(3,4),(3,5)],6)=>48 ([(0,1),(2,5),(3,4),(4,5)],6)=>96 ([(1,2),(3,4),(3,5),(4,5)],6)=>144 ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>144 ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>48 ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>96 ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>144 ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>48 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>144 ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>48 ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>96 ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>40 ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>72 ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>48 ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>144 ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>48 ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96 ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>48 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>72 ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>144 ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>80 ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>144 ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>96 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>144 ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>144 ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>80 ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>144 ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>96 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>96 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>144 ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96 ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96 ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>96 ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>48 ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>144 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>120 ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>96 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96 ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>72 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>168 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>144 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>96 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>48 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>144 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>240 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>240 ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>96 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>48 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>96 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>48 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>144 ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>96 ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>156 ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>48 ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>96 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>96 ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>48 ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>144 ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>72 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>144 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>168 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>216 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>96 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>216 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>216 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>192 ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>144 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>48 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>144 ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>144 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>192 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>168 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>240 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>360 ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>360 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>240 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>336 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>360 ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>144 ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>96 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>144 ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>96 ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>144 ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>144 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>144 ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>144 ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96 ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>168 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>192 ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>192 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>288 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>288 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>144 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>144 ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>192 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>240 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>240 ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>264 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>192 ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>288 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>360 ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>240 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>240 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>240 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>144 ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>48 ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>144 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>288 ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>432 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>312 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>288 ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>384 ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>384 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>456 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>504 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>576 ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>720
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of orbits of toric promotion on a graph.
Let $(V, E)$ be a graph with $n=|V|$ vertices, and let $\sigma: V \to [n]$ be a labelling of its vertices. Let
$ \tau_{i, j}(\sigma) = \begin{cases} \sigma & \text{if $\{\sigma^{-1}(i), \sigma^{-1}(j)\}\in E$}\\ (i, j)\circ\sigma & \text{otherwise}. \end{cases} $
The toric promotion operator is the product $\tau_{n,1}\tau_{n-1,n}\dots\tau_{1,2}$.
This statistic records the number of orbits in the orbit decomposition of toric promotion.
References
[1] Defant, C. Toric Promotion arXiv:2112.06843
Code
from sage.combinat.cyclic_sieving_phenomenon import orbit_decomposition
def toggle_labelling(G, pi, i, j):
    if G.has_edge(pi.index(i), pi.index(j)):
        return pi
    sigma = [j if e == i else i if e == j else e for e in pi]
    return Permutation(sigma)

def toric_promotion_labelling(G, pi):
    n = G.num_verts()
    assert set(G.vertices()) == set(range(n))
    for i in range(1, n):
        pi = toggle_labelling(G, pi, i, i+1)
    return toggle_labelling(G, pi, n, 1)

def toric_promotion_labelling_orbits(G):
    G = G.canonical_label().copy(immutable=True)
    return toric_promotion_labelling_orbits_aux(G)

@cached_function
def toric_promotion_labelling_orbits_aux(G):
    n = G.num_verts()
    return orbit_decomposition(Permutations(n),
                               lambda pi: toric_promotion_labelling(G, pi))

def statistic(G):
    return len(toric_promotion_labelling_orbits(G))
Created
Dec 14, 2021 at 15:56 by Martin Rubey
Updated
Dec 14, 2021 at 15:56 by Martin Rubey