Values
=>
Cc0020;cc-rep
([],1)=>1
([],2)=>2
([(0,1)],2)=>2
([],3)=>3
([(1,2)],3)=>2
([(0,2),(1,2)],3)=>3
([(0,1),(0,2),(1,2)],3)=>6
([],4)=>8
([(2,3)],4)=>8
([(1,3),(2,3)],4)=>4
([(0,3),(1,3),(2,3)],4)=>8
([(0,3),(1,2)],4)=>8
([(0,3),(1,2),(2,3)],4)=>8
([(1,2),(1,3),(2,3)],4)=>4
([(0,3),(1,2),(1,3),(2,3)],4)=>8
([(0,2),(0,3),(1,2),(1,3)],4)=>16
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>16
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>24
([],5)=>30
([(3,4)],5)=>24
([(2,4),(3,4)],5)=>18
([(1,4),(2,4),(3,4)],5)=>12
([(0,4),(1,4),(2,4),(3,4)],5)=>30
([(1,4),(2,3)],5)=>18
([(1,4),(2,3),(3,4)],5)=>12
([(0,1),(2,4),(3,4)],5)=>12
([(2,3),(2,4),(3,4)],5)=>18
([(0,4),(1,4),(2,3),(3,4)],5)=>30
([(1,4),(2,3),(2,4),(3,4)],5)=>12
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>30
([(1,3),(1,4),(2,3),(2,4)],5)=>10
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>20
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>10
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>30
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>20
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>40
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>50
([(0,4),(1,3),(2,3),(2,4)],5)=>30
([(0,1),(2,3),(2,4),(3,4)],5)=>12
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>30
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>40
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>30
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>40
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>50
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>20
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>12
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>30
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>60
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>50
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>80
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>90
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>120
([],6)=>144
([(4,5)],6)=>144
([(3,5),(4,5)],6)=>144
([(2,5),(3,5),(4,5)],6)=>96
([(1,5),(2,5),(3,5),(4,5)],6)=>48
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>144
([(2,5),(3,4)],6)=>144
([(2,5),(3,4),(4,5)],6)=>96
([(1,2),(3,5),(4,5)],6)=>144
([(3,4),(3,5),(4,5)],6)=>144
([(1,5),(2,5),(3,4),(4,5)],6)=>48
([(0,1),(2,5),(3,5),(4,5)],6)=>96
([(2,5),(3,4),(3,5),(4,5)],6)=>96
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>144
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>48
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>144
([(2,4),(2,5),(3,4),(3,5)],6)=>80
([(0,5),(1,5),(2,4),(3,4)],6)=>144
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>48
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>144
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>80
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>48
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>144
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>96
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>48
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>144
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>48
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>96
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>96
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>48
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>240
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>240
([(0,5),(1,4),(2,3)],6)=>144
([(1,5),(2,4),(3,4),(3,5)],6)=>48
([(0,1),(2,5),(3,4),(4,5)],6)=>96
([(1,2),(3,4),(3,5),(4,5)],6)=>144
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>144
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>48
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>96
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>144
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>48
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>144
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>48
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>96
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>40
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>72
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>48
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>144
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>48
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>48
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>72
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>144
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>80
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>144
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>96
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>144
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>144
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>80
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>144
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>96
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>96
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>144
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>96
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>48
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>144
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>120
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>96
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>72
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>168
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>144
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>96
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>48
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>144
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>240
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>240
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>96
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>48
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>96
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>48
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>144
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>96
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>156
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>48
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>96
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>96
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>48
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>144
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>72
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>144
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>168
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>216
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>96
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>216
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>216
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>192
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>144
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>48
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>144
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>144
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>192
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>168
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>240
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>360
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>360
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>240
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>336
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>360
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>144
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>96
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>144
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>96
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>144
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>144
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>144
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>144
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>168
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>192
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>192
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>288
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>288
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>144
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>144
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>192
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>240
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>240
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>264
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>192
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>288
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>360
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>240
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>240
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>240
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>144
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>48
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>144
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>288
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>432
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>312
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>288
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>384
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>384
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>456
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>504
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>576
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>720
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of orbits of toric promotion on a graph.
Let $(V, E)$ be a graph with $n=|V|$ vertices, and let $\sigma: V \to [n]$ be a labelling of its vertices. Let
$ \tau_{i, j}(\sigma) = \begin{cases} \sigma & \text{if $\{\sigma^{-1}(i), \sigma^{-1}(j)\}\in E$}\\ (i, j)\circ\sigma & \text{otherwise}. \end{cases} $
The toric promotion operator is the product $\tau_{n,1}\tau_{n-1,n}\dots\tau_{1,2}$.
This statistic records the number of orbits in the orbit decomposition of toric promotion.
Let $(V, E)$ be a graph with $n=|V|$ vertices, and let $\sigma: V \to [n]$ be a labelling of its vertices. Let
$ \tau_{i, j}(\sigma) = \begin{cases} \sigma & \text{if $\{\sigma^{-1}(i), \sigma^{-1}(j)\}\in E$}\\ (i, j)\circ\sigma & \text{otherwise}. \end{cases} $
The toric promotion operator is the product $\tau_{n,1}\tau_{n-1,n}\dots\tau_{1,2}$.
This statistic records the number of orbits in the orbit decomposition of toric promotion.
References
[1] Defant, C. Toric Promotion arXiv:2112.06843
Code
from sage.combinat.cyclic_sieving_phenomenon import orbit_decomposition def toggle_labelling(G, pi, i, j): if G.has_edge(pi.index(i), pi.index(j)): return pi sigma = [j if e == i else i if e == j else e for e in pi] return Permutation(sigma) def toric_promotion_labelling(G, pi): n = G.num_verts() assert set(G.vertices()) == set(range(n)) for i in range(1, n): pi = toggle_labelling(G, pi, i, i+1) return toggle_labelling(G, pi, n, 1) def toric_promotion_labelling_orbits(G): G = G.canonical_label().copy(immutable=True) return toric_promotion_labelling_orbits_aux(G) @cached_function def toric_promotion_labelling_orbits_aux(G): n = G.num_verts() return orbit_decomposition(Permutations(n), lambda pi: toric_promotion_labelling(G, pi)) def statistic(G): return len(toric_promotion_labelling_orbits(G))
Created
Dec 14, 2021 at 15:56 by Martin Rubey
Updated
Dec 14, 2021 at 15:56 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!