Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001758
St001758: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 1
([],2)
=> 1
([(0,1)],2)
=> 2
([],3)
=> 2
([(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> 4
([(0,1),(0,2),(1,2)],3)
=> 6
([],4)
=> 6
([(2,3)],4)
=> 6
([(1,3),(2,3)],4)
=> 4
([(0,3),(1,3),(2,3)],4)
=> 10
([(0,3),(1,2)],4)
=> 8
([(0,3),(1,2),(2,3)],4)
=> 10
([(1,2),(1,3),(2,3)],4)
=> 6
([(0,3),(1,2),(1,3),(2,3)],4)
=> 12
([(0,2),(0,3),(1,2),(1,3)],4)
=> 16
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 18
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 24
([],5)
=> 24
([(3,4)],5)
=> 24
([(2,4),(3,4)],5)
=> 16
([(1,4),(2,4),(3,4)],5)
=> 16
([(0,4),(1,4),(2,4),(3,4)],5)
=> 40
([(1,4),(2,3)],5)
=> 24
([(1,4),(2,3),(3,4)],5)
=> 12
([(0,1),(2,4),(3,4)],5)
=> 16
([(2,3),(2,4),(3,4)],5)
=> 24
([(0,4),(1,4),(2,3),(3,4)],5)
=> 24
([(1,4),(2,3),(2,4),(3,4)],5)
=> 16
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 40
([(1,3),(1,4),(2,3),(2,4)],5)
=> 24
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 32
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 24
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 28
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 40
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 56
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 60
([(0,4),(1,3),(2,3),(2,4)],5)
=> 28
([(0,1),(2,3),(2,4),(3,4)],5)
=> 24
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 32
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 48
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 40
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 48
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 60
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 40
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 24
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 48
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 72
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 64
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 84
Description
The number of orbits of promotion on a graph. Let $(V, E)$ be a graph with $n=|V|$ vertices, and let $\sigma: V \to [n]$ be a labelling of its vertices. Let $ \tau_{i, j}(\sigma) = \begin{cases} \sigma & \text{if $\{\sigma^{-1}(i), \sigma^{-1}(j)\}\in E$}\\ (i, j)\circ\sigma & \text{otherwise}. \end{cases} $ The promotion operator is the product $\tau_{n-1,n}\dots\tau_{1,2}$. This statistic records the number of orbits in the orbit decomposition of promotion.