edit this statistic or download as text // json
Identifier
Values
=>
Cc0020;cc-rep
([],1)=>1 ([],2)=>1 ([(0,1)],2)=>2 ([],3)=>2 ([(1,2)],3)=>2 ([(0,2),(1,2)],3)=>4 ([(0,1),(0,2),(1,2)],3)=>6 ([],4)=>6 ([(2,3)],4)=>6 ([(1,3),(2,3)],4)=>4 ([(0,3),(1,3),(2,3)],4)=>10 ([(0,3),(1,2)],4)=>8 ([(0,3),(1,2),(2,3)],4)=>10 ([(1,2),(1,3),(2,3)],4)=>6 ([(0,3),(1,2),(1,3),(2,3)],4)=>12 ([(0,2),(0,3),(1,2),(1,3)],4)=>16 ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>18 ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>24 ([],5)=>24 ([(3,4)],5)=>24 ([(2,4),(3,4)],5)=>16 ([(1,4),(2,4),(3,4)],5)=>16 ([(0,4),(1,4),(2,4),(3,4)],5)=>40 ([(1,4),(2,3)],5)=>24 ([(1,4),(2,3),(3,4)],5)=>12 ([(0,1),(2,4),(3,4)],5)=>16 ([(2,3),(2,4),(3,4)],5)=>24 ([(0,4),(1,4),(2,3),(3,4)],5)=>24 ([(1,4),(2,3),(2,4),(3,4)],5)=>16 ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>40 ([(1,3),(1,4),(2,3),(2,4)],5)=>24 ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>32 ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>24 ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>28 ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>40 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>56 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>60 ([(0,4),(1,3),(2,3),(2,4)],5)=>28 ([(0,1),(2,3),(2,4),(3,4)],5)=>24 ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>32 ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>48 ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>40 ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>48 ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>60 ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>40 ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>24 ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>48 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>72 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>64 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>84 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>96 ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>120 ([],6)=>120 ([(4,5)],6)=>120 ([(3,5),(4,5)],6)=>80 ([(2,5),(3,5),(4,5)],6)=>80 ([(1,5),(2,5),(3,5),(4,5)],6)=>40 ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>148 ([(2,5),(3,4)],6)=>120 ([(2,5),(3,4),(4,5)],6)=>60 ([(1,2),(3,5),(4,5)],6)=>80 ([(3,4),(3,5),(4,5)],6)=>120 ([(1,5),(2,5),(3,4),(4,5)],6)=>32 ([(0,1),(2,5),(3,5),(4,5)],6)=>96 ([(2,5),(3,4),(3,5),(4,5)],6)=>80 ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>112 ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>40 ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>152 ([(2,4),(2,5),(3,4),(3,5)],6)=>120 ([(0,5),(1,5),(2,4),(3,4)],6)=>80 ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>32 ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>96 ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>120 ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>28 ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>96 ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>128 ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>40 ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>108 ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>140 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>56 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>116 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>156 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>60 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>120 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>164 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>260 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>276 ([(0,5),(1,4),(2,3)],6)=>128 ([(1,5),(2,4),(3,4),(3,5)],6)=>44 ([(0,1),(2,5),(3,4),(4,5)],6)=>72 ([(1,2),(3,4),(3,5),(4,5)],6)=>120 ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>92 ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>48 ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>96 ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>120 ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>48 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>160 ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>80 ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>116 ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>56 ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>104 ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>40 ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>72 ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>136 ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>116 ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>60 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>152 ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>100 ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>144 ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>96 ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>124 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>112 ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>108 ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>144 ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>112 ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>144 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>144 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>120 ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>152 ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>120 ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>144 ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>48 ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>168 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>156 ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>196 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>168 ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>148 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>196 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>216 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>168 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>72 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>136 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>176 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>272 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>288 ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>160 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>64 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>172 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>84 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>200 ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>140 ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>180 ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>144 ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>156 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>128 ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>136 ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>196 ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>160 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>184 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>208 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>224 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>176 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>256 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>240 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>272 ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>192 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>184 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>216 ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>224 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>192 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>240 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>312 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>336 ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>352 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>296 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>384 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>408 ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>144 ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>136 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>144 ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>144 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>168 ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>168 ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>192 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>188 ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>232 ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>192 ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>212 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>232 ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>256 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>312 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>336 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>200 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>184 ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>240 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>280 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>264 ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>308 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>264 ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>344 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>408 ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>288 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>264 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>312 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>216 ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>120 ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>240 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>360 ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>480 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>368 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>336 ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>384 ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>432 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>480 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>528 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>600 ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>720
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of orbits of promotion on a graph.
Let $(V, E)$ be a graph with $n=|V|$ vertices, and let $\sigma: V \to [n]$ be a labelling of its vertices. Let
$ \tau_{i, j}(\sigma) = \begin{cases} \sigma & \text{if $\{\sigma^{-1}(i), \sigma^{-1}(j)\}\in E$}\\ (i, j)\circ\sigma & \text{otherwise}. \end{cases} $
The promotion operator is the product $\tau_{n-1,n}\dots\tau_{1,2}$.
This statistic records the number of orbits in the orbit decomposition of promotion.
References
[1] Defant, C. Toric Promotion arXiv:2112.06843
Code
from sage.combinat.cyclic_sieving_phenomenon import orbit_decomposition
def toggle_labelling(G, pi, i, j):
    if G.has_edge(pi.index(i), pi.index(j)):
        return pi
    sigma = [j if e == i else i if e == j else e for e in pi]
    return Permutation(sigma)

def promotion_labelling(G, pi):
    n = G.num_verts()
    assert set(G.vertices()) == set(range(n))
    for i in range(1, n):
        pi = toggle_labelling(G, pi, i, i+1)
    return pi

def promotion_labelling_orbits(G):
    G = G.canonical_label().copy(immutable=True)
    return promotion_labelling_orbits_aux(G)

@cached_function
def promotion_labelling_orbits_aux(G):
    n = G.num_verts()
    return orbit_decomposition(Permutations(n),
                               lambda pi: promotion_labelling(G, pi))

def statistic(G):
    return len(promotion_labelling_orbits(G))
Created
Dec 14, 2021 at 16:03 by Martin Rubey
Updated
Dec 14, 2021 at 16:03 by Martin Rubey