Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001780: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 1
[1,1]
=> 1
[3]
=> 1
[2,1]
=> 2
[1,1,1]
=> 1
[4]
=> 1
[3,1]
=> 3
[2,2]
=> 2
[2,1,1]
=> 3
[1,1,1,1]
=> 1
[5]
=> 1
[4,1]
=> 4
[3,2]
=> 6
[3,1,1]
=> 4
[2,2,1]
=> 6
[2,1,1,1]
=> 4
[1,1,1,1,1]
=> 1
[6]
=> 1
[5,1]
=> 5
[4,2]
=> 20
[4,1,1]
=> 5
[3,3]
=> 6
[3,2,1]
=> 12
[3,1,1,1]
=> 5
[2,2,2]
=> 6
[2,2,1,1]
=> 20
[2,1,1,1,1]
=> 5
[1,1,1,1,1,1]
=> 1
[7]
=> 1
[6,1]
=> 6
[5,2]
=> 30
[5,1,1]
=> 6
[4,3]
=> 8
[4,2,1]
=> 260
[4,1,1,1]
=> 6
[3,3,1]
=> 195
[3,2,2]
=> 195
[3,2,1,1]
=> 260
[3,1,1,1,1]
=> 6
[2,2,2,1]
=> 8
[2,2,1,1,1]
=> 30
[2,1,1,1,1,1]
=> 6
[1,1,1,1,1,1,1]
=> 1
[8]
=> 1
[7,1]
=> 7
[6,2]
=> 42
[6,1,1]
=> 7
[5,3]
=> 560
[5,2,1]
=> 924
Description
The order of promotion on the set of standard tableaux of given shape.
Mp00179: Integer partitions to skew partitionSkew partitions
Mp00185: Skew partitions cell posetPosets
St001779: Posets ⟶ ℤResult quality: 6% values known / values provided: 8%distinct values known / distinct values provided: 6%
Values
[1]
=> [[1],[]]
=> ([],1)
=> 1
[2]
=> [[2],[]]
=> ([(0,1)],2)
=> 1
[1,1]
=> [[1,1],[]]
=> ([(0,1)],2)
=> 1
[3]
=> [[3],[]]
=> ([(0,2),(2,1)],3)
=> 1
[2,1]
=> [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> 2
[1,1,1]
=> [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 1
[4]
=> [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1]
=> [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> 3
[2,2]
=> [[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,1]
=> [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> 3
[1,1,1,1]
=> [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[5]
=> [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,1]
=> [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 4
[3,2]
=> [[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 6
[3,1,1]
=> [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> 4
[2,2,1]
=> [[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 6
[2,1,1,1]
=> [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 4
[1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[6]
=> [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[5,1]
=> [[5,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 5
[4,2]
=> [[4,2],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> 20
[4,1,1]
=> [[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 5
[3,3]
=> [[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
[3,2,1]
=> [[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> 12
[3,1,1,1]
=> [[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 5
[2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
[2,2,1,1]
=> [[2,2,1,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> 20
[2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 5
[1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[7]
=> [[7],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 1
[6,1]
=> [[6,1],[]]
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> ? = 6
[5,2]
=> [[5,2],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> ? = 30
[5,1,1]
=> [[5,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ? = 6
[4,3]
=> [[4,3],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ? = 8
[4,2,1]
=> [[4,2,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ? = 260
[4,1,1,1]
=> [[4,1,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7)
=> ? = 6
[3,3,1]
=> [[3,3,1],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ? = 195
[3,2,2]
=> [[3,2,2],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ? = 195
[3,2,1,1]
=> [[3,2,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ? = 260
[3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ? = 6
[2,2,2,1]
=> [[2,2,2,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ? = 8
[2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> ? = 30
[2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> ? = 6
[1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 1
[8]
=> [[8],[]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 1
[7,1]
=> [[7,1],[]]
=> ([(0,2),(0,7),(3,4),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 7
[6,2]
=> [[6,2],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8)
=> ? = 42
[6,1,1]
=> [[6,1,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8)
=> ? = 7
[5,3]
=> [[5,3],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8)
=> ? = 560
[5,2,1]
=> [[5,2,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8)
=> ? = 924
[5,1,1,1]
=> [[5,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8)
=> ? = 7
[4,4]
=> [[4,4],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 8
[4,3,1]
=> [[4,3,1],[]]
=> ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ? = 352
[4,2,2]
=> [[4,2,2],[]]
=> ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ? = 462
[4,2,1,1]
=> [[4,2,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(5,7),(6,4),(6,7)],8)
=> ? = 660
[4,1,1,1,1]
=> [[4,1,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8)
=> ? = 7
[3,3,2]
=> [[3,3,2],[]]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7)],8)
=> ? = 9
[3,3,1,1]
=> [[3,3,1,1],[]]
=> ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ? = 462
[3,2,2,1]
=> [[3,2,2,1],[]]
=> ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ? = 352
[3,2,1,1,1]
=> [[3,2,1,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8)
=> ? = 924
[3,1,1,1,1,1]
=> [[3,1,1,1,1,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8)
=> ? = 7
[2,2,2,2]
=> [[2,2,2,2],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 8
[2,2,2,1,1]
=> [[2,2,2,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8)
=> ? = 560
[2,2,1,1,1,1]
=> [[2,2,1,1,1,1],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8)
=> ? = 42
[2,1,1,1,1,1,1]
=> [[2,1,1,1,1,1,1],[]]
=> ([(0,2),(0,7),(3,4),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 7
[1,1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1,1],[]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 1
[9]
=> [[9],[]]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ? = 1
[8,1]
=> [[8,1],[]]
=> ([(0,2),(0,8),(3,5),(4,3),(5,7),(6,4),(7,1),(8,6)],9)
=> ? = 8
[7,2]
=> [[7,2],[]]
=> ([(0,2),(0,7),(2,8),(3,4),(4,6),(5,3),(6,1),(7,5),(7,8)],9)
=> ? = 56
[7,1,1]
=> [[7,1,1],[]]
=> ([(0,7),(0,8),(3,4),(4,6),(5,3),(6,2),(7,5),(8,1)],9)
=> ? = 8
[6,3]
=> [[6,3],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(4,8),(5,1),(6,4),(6,7),(7,8)],9)
=> ? = 312
[6,2,1]
=> [[6,2,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(6,8),(7,1),(7,8)],9)
=> ? = 3696
[6,1,1,1]
=> [[6,1,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(8,4)],9)
=> ? = 8
[5,4]
=> [[5,4],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,8),(4,1),(4,7),(5,3),(5,6),(6,8),(8,7)],9)
=> ? = 10
[5,3,1]
=> [[5,3,1],[]]
=> ([(0,5),(0,6),(3,4),(3,8),(4,2),(5,3),(5,7),(6,1),(6,7),(7,8)],9)
=> ? = 26400
[5,2,2]
=> [[5,2,2],[]]
=> ([(0,5),(0,6),(2,8),(3,4),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8)],9)
=> ? = 1848
[5,2,1,1]
=> [[5,2,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(6,8),(7,3),(7,8)],9)
=> ? = 308154
[5,1,1,1,1]
=> [[5,1,1,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,6),(5,2),(6,1),(7,3),(8,4)],9)
=> ? = 8
[4,4,1]
=> [[4,4,1],[]]
=> ([(0,4),(0,5),(2,7),(3,2),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(8,7)],9)
=> ? = 6188
Description
The order of promotion on the set of linear extensions of a poset.