searching the database
Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001802
Values
([],1)
=> 1
([],2)
=> 4
([(0,1)],2)
=> 2
([],3)
=> 27
([(1,2)],3)
=> 6
([(0,2),(1,2)],3)
=> 6
([(0,1),(0,2),(1,2)],3)
=> 6
([],4)
=> 256
([(2,3)],4)
=> 32
([(1,3),(2,3)],4)
=> 24
([(0,3),(1,3),(2,3)],4)
=> 30
([(0,3),(1,2)],4)
=> 16
([(0,3),(1,2),(2,3)],4)
=> 16
([(1,2),(1,3),(2,3)],4)
=> 24
([(0,3),(1,2),(1,3),(2,3)],4)
=> 14
([(0,2),(0,3),(1,2),(1,3)],4)
=> 32
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 16
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 24
([],5)
=> 3125
([(3,4)],5)
=> 250
([(2,4),(3,4)],5)
=> 150
([(1,4),(2,4),(3,4)],5)
=> 150
([(0,4),(1,4),(2,4),(3,4)],5)
=> 260
([(1,4),(2,3)],5)
=> 80
([(1,4),(2,3),(3,4)],5)
=> 80
([(0,1),(2,4),(3,4)],5)
=> 48
([(2,3),(2,4),(3,4)],5)
=> 150
([(0,4),(1,4),(2,3),(3,4)],5)
=> 60
([(1,4),(2,3),(2,4),(3,4)],5)
=> 70
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 48
([(1,3),(1,4),(2,3),(2,4)],5)
=> 160
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 94
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 80
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 42
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 50
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 180
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 66
([(0,4),(1,3),(2,3),(2,4)],5)
=> 42
([(0,1),(2,3),(2,4),(3,4)],5)
=> 48
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 32
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 32
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 10
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 28
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 36
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 44
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 120
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 78
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 52
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 48
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 64
Description
The number of endomorphisms of a graph.
An endomorphism of a graph $(V, E)$ is a map $f: V\to V$ such that for any edge $(u,v)\in E$ also $\big(f(u), f(v)\big)\in E$.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!