Values
([],1) => 1
([],2) => 4
([(0,1)],2) => 2
([],3) => 27
([(1,2)],3) => 6
([(0,2),(1,2)],3) => 6
([(0,1),(0,2),(1,2)],3) => 6
([],4) => 256
([(2,3)],4) => 32
([(1,3),(2,3)],4) => 24
([(0,3),(1,3),(2,3)],4) => 30
([(0,3),(1,2)],4) => 16
([(0,3),(1,2),(2,3)],4) => 16
([(1,2),(1,3),(2,3)],4) => 24
([(0,3),(1,2),(1,3),(2,3)],4) => 14
([(0,2),(0,3),(1,2),(1,3)],4) => 32
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 16
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 24
([],5) => 3125
([(3,4)],5) => 250
([(2,4),(3,4)],5) => 150
([(1,4),(2,4),(3,4)],5) => 150
([(0,4),(1,4),(2,4),(3,4)],5) => 260
([(1,4),(2,3)],5) => 80
([(1,4),(2,3),(3,4)],5) => 80
([(0,1),(2,4),(3,4)],5) => 48
([(2,3),(2,4),(3,4)],5) => 150
([(0,4),(1,4),(2,3),(3,4)],5) => 60
([(1,4),(2,3),(2,4),(3,4)],5) => 70
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 48
([(1,3),(1,4),(2,3),(2,4)],5) => 160
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 94
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 80
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 42
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 50
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 180
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 66
([(0,4),(1,3),(2,3),(2,4)],5) => 42
([(0,1),(2,3),(2,4),(3,4)],5) => 48
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 32
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 32
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 10
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 28
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 36
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 44
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 120
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 78
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 52
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => 48
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 64
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 60
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 120
([],6) => 46656
([(4,5)],6) => 2592
([(3,5),(4,5)],6) => 1296
([(2,5),(3,5),(4,5)],6) => 1080
([(1,5),(2,5),(3,5),(4,5)],6) => 1560
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3130
([(2,5),(3,4)],6) => 576
([(2,5),(3,4),(4,5)],6) => 576
([(1,2),(3,5),(4,5)],6) => 288
([(3,4),(3,5),(4,5)],6) => 1296
([(1,5),(2,5),(3,4),(4,5)],6) => 360
([(0,1),(2,5),(3,5),(4,5)],6) => 256
([(2,5),(3,4),(3,5),(4,5)],6) => 504
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 374
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 288
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 282
([(2,4),(2,5),(3,4),(3,5)],6) => 1152
([(0,5),(1,5),(2,4),(3,4)],6) => 144
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 564
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 166
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 576
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 252
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 234
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 440
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 300
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 162
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 220
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 1080
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 316
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 680
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 396
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 192
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 282
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 1280
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 528
([(0,5),(1,4),(2,3)],6) => 216
([(1,5),(2,4),(3,4),(3,5)],6) => 252
([(0,1),(2,5),(3,4),(4,5)],6) => 144
([(1,2),(3,4),(3,5),(4,5)],6) => 288
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 156
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 192
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => 140
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 104
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 192
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 112
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 60
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 296
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 168
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => 22
>>> Load all 200 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of endomorphisms of a graph.
An endomorphism of a graph (V,E) is a map f:V→V such that for any edge (u,v)∈E also (f(u),f(v))∈E.
An endomorphism of a graph (V,E) is a map f:V→V such that for any edge (u,v)∈E also (f(u),f(v))∈E.
Code
def statistic(G):
G = G.relabel(inplace=False)
n = G.num_verts()
endomorphisms = 0
for f in cartesian_product([list(range(n)) for _ in range(n)]):
if all(G.has_edge(f[u], f[v]) for u, v in G.edges(labels=False)):
endomorphisms += 1
return endomorphisms
Created
Jun 06, 2022 at 18:38 by Martin Rubey
Updated
Jun 06, 2022 at 18:38 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!