edit this statistic or download as text // json
Identifier
Values
=>
Cc0020;cc-rep
([],1)=>1 ([],2)=>4 ([(0,1)],2)=>2 ([],3)=>27 ([(1,2)],3)=>6 ([(0,2),(1,2)],3)=>6 ([(0,1),(0,2),(1,2)],3)=>6 ([],4)=>256 ([(2,3)],4)=>32 ([(1,3),(2,3)],4)=>24 ([(0,3),(1,3),(2,3)],4)=>30 ([(0,3),(1,2)],4)=>16 ([(0,3),(1,2),(2,3)],4)=>16 ([(1,2),(1,3),(2,3)],4)=>24 ([(0,3),(1,2),(1,3),(2,3)],4)=>14 ([(0,2),(0,3),(1,2),(1,3)],4)=>32 ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>16 ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>24 ([],5)=>3125 ([(3,4)],5)=>250 ([(2,4),(3,4)],5)=>150 ([(1,4),(2,4),(3,4)],5)=>150 ([(0,4),(1,4),(2,4),(3,4)],5)=>260 ([(1,4),(2,3)],5)=>80 ([(1,4),(2,3),(3,4)],5)=>80 ([(0,1),(2,4),(3,4)],5)=>48 ([(2,3),(2,4),(3,4)],5)=>150 ([(0,4),(1,4),(2,3),(3,4)],5)=>60 ([(1,4),(2,3),(2,4),(3,4)],5)=>70 ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>48 ([(1,3),(1,4),(2,3),(2,4)],5)=>160 ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>94 ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>80 ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>42 ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>50 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>180 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>66 ([(0,4),(1,3),(2,3),(2,4)],5)=>42 ([(0,1),(2,3),(2,4),(3,4)],5)=>48 ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>32 ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>32 ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>10 ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>28 ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>36 ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>44 ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>120 ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>78 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>52 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>48 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>64 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>60 ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>120 ([],6)=>46656 ([(4,5)],6)=>2592 ([(3,5),(4,5)],6)=>1296 ([(2,5),(3,5),(4,5)],6)=>1080 ([(1,5),(2,5),(3,5),(4,5)],6)=>1560 ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>3130 ([(2,5),(3,4)],6)=>576 ([(2,5),(3,4),(4,5)],6)=>576 ([(1,2),(3,5),(4,5)],6)=>288 ([(3,4),(3,5),(4,5)],6)=>1296 ([(1,5),(2,5),(3,4),(4,5)],6)=>360 ([(0,1),(2,5),(3,5),(4,5)],6)=>256 ([(2,5),(3,4),(3,5),(4,5)],6)=>504 ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>374 ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>288 ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>282 ([(2,4),(2,5),(3,4),(3,5)],6)=>1152 ([(0,5),(1,5),(2,4),(3,4)],6)=>144 ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>564 ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>166 ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>576 ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>252 ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>234 ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>440 ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>300 ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>162 ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>220 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>1080 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>316 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>680 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>396 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>192 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>282 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>1280 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>528 ([(0,5),(1,4),(2,3)],6)=>216 ([(1,5),(2,4),(3,4),(3,5)],6)=>252 ([(0,1),(2,5),(3,4),(4,5)],6)=>144 ([(1,2),(3,4),(3,5),(4,5)],6)=>288 ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>156 ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>192 ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>140 ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>104 ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>192 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>112 ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>60 ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>296 ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>168 ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>22 ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>264 ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>162 ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>99 ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>153 ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>216 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>136 ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>104 ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>340 ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>108 ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>234 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>74 ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>101 ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>192 ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>86 ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>76 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>130 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>86 ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>88 ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>864 ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>152 ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>468 ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>312 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>24 ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>84 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>174 ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>119 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>112 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>114 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>164 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>312 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>292 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>198 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>200 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>144 ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>522 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>288 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>174 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>384 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>256 ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>132 ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>362 ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>96 ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>44 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>144 ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>75 ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>99 ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>113 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>58 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>82 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>768 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>144 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>120 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>180 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>168 ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>220 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>360 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>194 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>244 ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>117 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>84 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>130 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>168 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>232 ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>144 ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>120 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>56 ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>336 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>72 ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>246 ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>156 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>40 ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>70 ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>180 ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>74 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>196 ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>110 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>128 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>112 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>52 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>52 ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>50 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>10 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>36 ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>70 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>124 ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>90 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>124 ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>152 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>150 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>228 ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>720 ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>504 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>372 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>176 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>240 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>384 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>208 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>288 ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>720
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of endomorphisms of a graph.
An endomorphism of a graph $(V, E)$ is a map $f: V\to V$ such that for any edge $(u,v)\in E$ also $\big(f(u), f(v)\big)\in E$.
Code
def statistic(G):
    G = G.relabel(inplace=False)
    n = G.num_verts()
    endomorphisms = 0
    for f in cartesian_product([list(range(n)) for _ in range(n)]):
        if all(G.has_edge(f[u], f[v]) for u, v in G.edges(labels=False)):
            endomorphisms += 1
    return endomorphisms

Created
Jun 06, 2022 at 18:38 by Martin Rubey
Updated
Jun 06, 2022 at 18:38 by Martin Rubey