Processing math: 23%

Your data matches 47 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001876
Mp00047: Ordered trees to posetPosets
Mp00206: Posets antichains of maximal sizeLattices
St001876: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[[],[[[]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]],[[]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[[[]]],[]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[],[],[],[[[]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0
[[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[],[[[]]],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0
[[],[],[[[[]]]]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[[]],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[],[[[]]],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[[]]],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[],[[[[]]]],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[],[[],[[[]]]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[[[[]]],[]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[[[[]]]]]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[[[]]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[]],[[],[[]]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[[[]],[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[[]]],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]]],[],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[[]]],[[]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[],[]],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0
[[[[[]]]],[],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[[],[[]]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[[]],[]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[],[[[]]]],[]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0
Description
The number of 2-regular simple modules in the incidence algebra of the lattice.
Matching statistic: St001877
Mp00047: Ordered trees to posetPosets
Mp00206: Posets antichains of maximal sizeLattices
St001877: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[[],[[[]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]],[[]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[[[]]],[]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[],[],[],[[[]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0
[[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[],[[[]]],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0
[[],[],[[[[]]]]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[[]],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[],[[[]]],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[[]]],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[],[[[[]]]],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[],[[],[[[]]]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[[[[]]],[]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[[[[]]]]]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[[[]]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[]],[[],[[]]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[[[]],[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[[]]],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]]],[],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[[]]],[[]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[],[]],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0
[[[[[]]]],[],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[[],[[]]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[[]],[]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[],[[[]]]],[]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0
Description
Number of indecomposable injective modules with projective dimension 2.
Matching statistic: St001681
Mp00047: Ordered trees to posetPosets
Mp00206: Posets antichains of maximal sizeLattices
St001681: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[],[[[]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]],[[]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[[[]]],[]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[[],[],[],[[[]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[],[[[]]],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[],[[[[]]]]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[[]],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[],[[[]]],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[[]]],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[],[[[[]]]],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[],[[],[[[]]]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[[[[]]],[]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[[[[]]]]]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[[[]]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[]],[[],[[]]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[[[]],[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[[]]],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]]],[],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[[]]],[[]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[],[]],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[[]]]],[],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[],[[]]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[[]],[]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[],[[[]]]],[]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
Description
The number of inclusion-wise minimal subsets of a lattice, whose meet is the bottom element. For example, the pentagon lattice has three such sets: the bottom element, and the two antichains of size two. The cube is the smallest lattice which has such sets of three different sizes: the bottom element, six antichains of size two and one antichain of size three.
Matching statistic: St001633
Mp00047: Ordered trees to posetPosets
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
St001633: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[[],[[[]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]],[[]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[[[]]],[]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[],[],[],[[[]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[],[[[]]],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[],[],[[[[]]]]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[[]],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[],[[[]]],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[[]]],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[],[[[[]]]],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[],[[],[[[]]]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[[[[]]],[]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[[[[]]]]]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[[[]]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[]],[[],[[]]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[[[]],[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[[]]],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]]],[],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[[]]],[[]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[],[]],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[[]]]],[],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[[],[[]]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[[]],[]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[],[[[]]]],[]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
Description
The number of simple modules with projective dimension two in the incidence algebra of the poset.
Matching statistic: St000071
Mp00047: Ordered trees to posetPosets
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
St000071: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[],[[[]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]],[[]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[[[]]],[]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[[],[],[],[[[]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[],[[[]]],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[],[[[[]]]]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[[]],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[],[[[]]],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[[]]],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[],[[[[]]]],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[],[[],[[[]]]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[[[[]]],[]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[[[[]]]]]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[[[]]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[]],[[],[[]]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[[[]],[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[[]]],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]]],[],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[[]]],[[]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[],[]],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[[]]]],[],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[],[[]]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[[]],[]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[],[[[]]]],[]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
Description
The number of maximal chains in a poset.
Matching statistic: St000909
Mp00047: Ordered trees to posetPosets
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
St000909: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[],[[[]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]],[[]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[[[]]],[]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[[],[],[],[[[]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[],[[[]]],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[],[[[[]]]]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[[]],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[],[[[]]],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[[]]],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[],[[[[]]]],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[],[[],[[[]]]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[[[[]]],[]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[[[[]]]]]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[[[]]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[]],[[],[[]]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[[[]],[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[[]]],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]]],[],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[[]]],[[]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[],[]],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[[]]]],[],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[],[[]]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[[]],[]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[],[[[]]]],[]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
Description
The number of maximal chains of maximal size in a poset.
Mp00047: Ordered trees to posetPosets
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
St000848: Posets ⟶ ℤResult quality: 97% values known / values provided: 97%distinct values known / distinct values provided: 100%
Values
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[[],[[[]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]],[[]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[[[]]],[]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[],[],[],[[[]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[],[[[]]],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[],[],[[[[]]]]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[[]],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[],[[[]]],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[[]]],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[],[[[[]]]],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[],[[],[[[]]]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[[[[]]],[]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[[[[]]]]]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[[[]]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[]],[[],[[]]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[[[]],[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[[]]],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]]],[],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[[]]],[[]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[],[]],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[[]]]],[],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[[],[[]]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[[]],[]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[],[[[]]]],[]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[[],[[[[[[[]]]]]]]]
=> ([(0,8),(1,7),(2,8),(3,4),(4,6),(5,3),(6,2),(7,5)],9)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[[[[[[[[]]]]]]],[]]
=> ([(0,8),(1,7),(2,8),(3,4),(4,6),(5,3),(6,2),(7,5)],9)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
Description
The balance constant multiplied with the number of linear extensions of a poset. A pair of elements x,y of a poset is α-balanced if the proportion P(x,y) of linear extensions where x comes before y is between α and 1α. The balance constant of a poset is max Kislitsyn [1] conjectured that every poset which is not a chain is 1/3-balanced. Brightwell, Felsner and Trotter [2] show that it is at least (1-\sqrt 5)/10-balanced. Olson and Sagan [3] exhibit various posets that are 1/2-balanced.
Mp00047: Ordered trees to posetPosets
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
St000849: Posets ⟶ ℤResult quality: 97% values known / values provided: 97%distinct values known / distinct values provided: 100%
Values
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[[],[[[]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]],[[]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[[[]]],[]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[],[],[],[[[]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[],[[[]]],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[],[],[[[[]]]]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[[]],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[],[[[]]],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[[]]],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[],[[[[]]]],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[],[[],[[[]]]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[],[[[[]]],[]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[],[[[[[]]]]]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[[[]]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[]],[[],[[]]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[]],[[[]],[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[[]]],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]]],[],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[[]]],[[]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[[],[]],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[]]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[[]]]],[],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[[],[[]]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[[]],[]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[],[[[]]]],[]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[[],[[[[[[[]]]]]]]]
=> ([(0,8),(1,7),(2,8),(3,4),(4,6),(5,3),(6,2),(7,5)],9)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[[[[[[[[]]]]]]],[]]
=> ([(0,8),(1,7),(2,8),(3,4),(4,6),(5,3),(6,2),(7,5)],9)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
Description
The number of 1/3-balanced pairs in a poset. A pair of elements x,y of a poset is \alpha-balanced if the proportion of linear extensions where x comes before y is between \alpha and 1-\alpha. Kislitsyn [1] conjectured that every poset which is not a chain has a 1/3-balanced pair. Brightwell, Felsner and Trotter [2] show that at least a (1-\sqrt 5)/10-balanced pair exists in posets which are not chains. Olson and Sagan [3] show that posets corresponding to skew Ferrers diagrams have a 1/3-balanced pair.
Mp00047: Ordered trees to posetPosets
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
St000910: Posets ⟶ ℤResult quality: 97% values known / values provided: 97%distinct values known / distinct values provided: 100%
Values
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[],[[[]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]],[[]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[[[]]],[]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[[],[],[],[[[]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[],[[[]]],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[],[[[[]]]]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[[]],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[],[[[]]],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[[]]],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[],[[[[]]]],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[],[[],[[[]]]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[[[[]]],[]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[[[[]]]]]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[[[]]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[]],[[],[[]]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[[[]],[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[[]]],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]]],[],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[[]]],[[]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[],[]],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[[]]]],[],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[],[[]]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[[]],[]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[],[[[]]]],[]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0 + 1
[[],[[[[[[[]]]]]]]]
=> ([(0,8),(1,7),(2,8),(3,4),(4,6),(5,3),(6,2),(7,5)],9)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0 + 1
[[[[[[[[]]]]]]],[]]
=> ([(0,8),(1,7),(2,8),(3,4),(4,6),(5,3),(6,2),(7,5)],9)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0 + 1
Description
The number of maximal chains of minimal length in a poset.
Mp00047: Ordered trees to posetPosets
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
St001105: Posets ⟶ ℤResult quality: 97% values known / values provided: 97%distinct values known / distinct values provided: 100%
Values
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[],[[[]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]],[[]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[[[]]],[]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[[],[],[],[[[]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[],[[[]]],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[],[[[[]]]]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[[]],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[],[[[]]],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[[]]],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[],[[[[]]]],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[],[[],[[[]]]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[[[[]]],[]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[[[[]]]]]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[[[]]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[]],[[],[[]]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[[[]],[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[[]]],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]]],[],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[[]]],[[]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[[],[]],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[]]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[[]]]],[],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[],[[]]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[[]],[]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[],[[[]]]],[]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0 + 1
[[],[[[[[[[]]]]]]]]
=> ([(0,8),(1,7),(2,8),(3,4),(4,6),(5,3),(6,2),(7,5)],9)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0 + 1
[[[[[[[[]]]]]]],[]]
=> ([(0,8),(1,7),(2,8),(3,4),(4,6),(5,3),(6,2),(7,5)],9)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0 + 1
Description
The number of greedy linear extensions of a poset. A linear extension of a poset P with elements \{x_1,\dots,x_n\} is greedy, if it can be obtained by the following algorithm: * Step 1. Choose a minimal element x_1. * Step 2. Suppose X=\{x_1,\dots,x_i\} have been chosen. If there is at least one minimal element of P\setminus X which is greater than x_i then choose x_{i+1} to be any such minimal element; otherwise, choose x_{i+1} to be any minimal element of P\setminus X. This statistic records the number of greedy linear extensions.
The following 37 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001106The number of supergreedy linear extensions of a poset. St001510The number of self-evacuating linear extensions of a finite poset. St000100The number of linear extensions of a poset. St000632The jump number of the poset. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St000850The number of 1/2-balanced pairs in a poset. St001397Number of pairs of incomparable elements in a finite poset. St001398Number of subsets of size 3 of elements in a poset that form a "v". St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St001268The size of the largest ordinal summand in the poset. St001399The distinguishing number of a poset. St001779The order of promotion on the set of linear extensions of a poset. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St001964The interval resolution global dimension of a poset. St000810The sum of the entries in the column specified by the partition of the change of basis matrix from powersum symmetric functions to monomial symmetric functions. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000407The number of occurrences of the pattern 2143 in a permutation. St000687The dimension of Hom(I,P) for the LNakayama algebra of a Dyck path. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001327The minimal number of occurrences of the split-pattern in a linear ordering of the vertices of the graph. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000570The Edelman-Greene number of a permutation. St001091The number of parts in an integer partition whose next smaller part has the same size. St000160The multiplicity of the smallest part of a partition. St000706The product of the factorials of the multiplicities of an integer partition. St000897The number of different multiplicities of parts of an integer partition. St000752The Grundy value for the game 'Couples are forever' on an integer partition. St001571The Cartan determinant of the integer partition. St000455The second largest eigenvalue of a graph if it is integral. St001271The competition number of a graph.