Processing math: 40%

Your data matches 49 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001878
Mp00243: Graphs —weak duplicate order⟶ Posets
Mp00205: Posets —maximal antichains⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(1,5),(2,3),(3,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,5),(2,3),(5,4)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Mp00247: Graphs —de-duplicate⟶ Graphs
Mp00111: Graphs —complement⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 16% ā—values known / values provided: 16%ā—distinct values known / distinct values provided: 50%
Values
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> ? = 2
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 2
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 2
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 2
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 2
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> 2
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> 2
([(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of q possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number HG(G) of a graph G is the largest integer q such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of q possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Mp00247: Graphs —de-duplicate⟶ Graphs
Mp00259: Graphs —vertex addition⟶ Graphs
St001577: Graphs ⟶ ℤResult quality: 16% ā—values known / values provided: 16%ā—distinct values known / distinct values provided: 100%
Values
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 1 = 2 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 1 = 2 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 1 = 2 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 1 = 2 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 1 = 2 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 1 = 2 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 1 = 2 - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 1 = 2 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 1 = 2 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 1 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ? = 2 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 2 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 2 - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ? = 2 - 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 - 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2 - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 - 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 1 = 2 - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 2 - 1
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 1 - 1
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 1 = 2 - 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 1 = 2 - 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 1 = 2 - 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 1 = 2 - 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 1 = 2 - 1
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 1 = 2 - 1
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 1 - 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 1 = 2 - 1
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 1 = 2 - 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 1 = 2 - 1
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 1 = 2 - 1
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 1 - 1
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 1 - 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(2,3),(4,7),(5,6),(6,7)],8)
=> ? = 2 - 1
([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 2 - 1
([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ? = 2 - 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 - 1
Description
The minimal number of edges to add or remove to make a graph a cograph. A cograph is a graph that can be obtained from the one vertex graph by complementation and disjoint union.
Matching statistic: St000299
Mp00247: Graphs —de-duplicate⟶ Graphs
Mp00259: Graphs —vertex addition⟶ Graphs
St000299: Graphs ⟶ ℤResult quality: 16% ā—values known / values provided: 16%ā—distinct values known / distinct values provided: 100%
Values
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 4 = 2 + 2
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 4 = 2 + 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 4 = 2 + 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 4 = 2 + 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 4 = 2 + 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 4 = 2 + 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 4 = 2 + 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 4 = 2 + 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 4 = 2 + 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 4 = 2 + 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 4 = 2 + 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 1 + 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ? = 2 + 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 2 + 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 1 + 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 2 + 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ? = 2 + 2
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2 + 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 4 = 2 + 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 2 + 2
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 1 + 2
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1 + 2
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 4 = 2 + 2
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 4 = 2 + 2
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 4 = 2 + 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 4 = 2 + 2
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 4 = 2 + 2
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 1 + 2
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 4 = 2 + 2
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 4 = 2 + 2
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 4 = 2 + 2
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 4 = 2 + 2
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 1 + 2
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 1 + 2
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(2,3),(4,7),(5,6),(6,7)],8)
=> ? = 2 + 2
([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 2 + 2
([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ? = 2 + 2
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 1 + 2
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 + 2
Description
The number of nonisomorphic vertex-induced subtrees.
Matching statistic: St001060
Mp00247: Graphs —de-duplicate⟶ Graphs
Mp00259: Graphs —vertex addition⟶ Graphs
St001060: Graphs ⟶ ℤResult quality: 12% ā—values known / values provided: 12%ā—distinct values known / distinct values provided: 50%
Values
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> ? = 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> ? = 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> ? = 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> ? = 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ? = 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ? = 2
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 2
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 1
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> ? = 2
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> ? = 2
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
Description
The distinguishing index of a graph. This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism. If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Matching statistic: St001165
Mp00111: Graphs —complement⟶ Graphs
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001165: Dyck paths ⟶ ℤResult quality: 6% ā—values known / values provided: 6%ā—distinct values known / distinct values provided: 50%
Values
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 2
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 2
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2
([(0,2),(0,3),(0,4),(0,6),(1,2),(1,3),(1,4),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(0,1),(0,3),(0,5),(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,5),(3,4),(4,6),(5,6)],7)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 2
([(0,2),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
([(0,1),(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 2
([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
Description
Number of simple modules with even projective dimension in the corresponding Nakayama algebra.
Matching statistic: St001198
Mp00111: Graphs —complement⟶ Graphs
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001198: Dyck paths ⟶ ℤResult quality: 6% ā—values known / values provided: 6%ā—distinct values known / distinct values provided: 50%
Values
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 2
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 2
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2
([(0,2),(0,3),(0,4),(0,6),(1,2),(1,3),(1,4),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(0,1),(0,3),(0,5),(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,5),(3,4),(4,6),(5,6)],7)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 2
([(0,2),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
([(0,1),(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 2
([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
Description
The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA.
Matching statistic: St001206
Mp00111: Graphs —complement⟶ Graphs
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001206: Dyck paths ⟶ ℤResult quality: 6% ā—values known / values provided: 6%ā—distinct values known / distinct values provided: 50%
Values
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 2
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 2
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2
([(0,2),(0,3),(0,4),(0,6),(1,2),(1,3),(1,4),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(0,1),(0,3),(0,5),(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,5),(3,4),(4,6),(5,6)],7)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 2
([(0,2),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
([(0,1),(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 2
([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
Description
The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA.
Matching statistic: St001006
Mp00111: Graphs —complement⟶ Graphs
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001006: Dyck paths ⟶ ℤResult quality: 6% ā—values known / values provided: 6%ā—distinct values known / distinct values provided: 50%
Values
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(0,6),(1,2),(1,3),(1,4),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,1),(0,3),(0,5),(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,5),(3,4),(4,6),(5,6)],7)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
([(0,2),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
Description
Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001013
Mp00111: Graphs —complement⟶ Graphs
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001013: Dyck paths ⟶ ℤResult quality: 6% ā—values known / values provided: 6%ā—distinct values known / distinct values provided: 50%
Values
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(0,6),(1,2),(1,3),(1,4),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,1),(0,3),(0,5),(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,5),(3,4),(4,6),(5,6)],7)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
([(0,2),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
Description
Number of indecomposable injective modules with codominant dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path.
The following 39 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001188The number of simple modules S with grade inf at least two in the Nakayama algebra A corresponding to the Dyck path. St001191Number of simple modules S with Ext_A^i(S,A)=0 for all i=0,1,...,g-1 in the corresponding Nakayama algebra A with global dimension g. St001195The global dimension of the algebra A/AfA of the corresponding Nakayama algebra A with minimal left faithful projective-injective module Af. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001256Number of simple reflexive modules that are 2-stable reflexive. St001473The absolute value of the sum of all entries of the Coxeter matrix of the corresponding LNakayama algebra. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001193The dimension of Ext_A^1(A/AeA,A) in the corresponding Nakayama algebra A such that eA is a minimal faithful projective-injective module. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c_0,c_1,...,c_{nāˆ’1}] such that n=c_0 < c_i for all i > 0 a special CNakayama algebra. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001618The cardinality of the Frattini sublattice of a lattice. St001720The minimal length of a chain of small intervals in a lattice. St001613The binary logarithm of the size of the center of a lattice. St001615The number of join prime elements of a lattice. St001617The dimension of the space of valuations of a lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001820The size of the image of the pop stack sorting operator. St001881The number of factors of a lattice as a Cartesian product of lattices. St001845The number of join irreducibles minus the rank of a lattice. St001846The number of elements which do not have a complement in the lattice. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001616The number of neutral elements in a lattice. St001681The number of inclusion-wise minimal subsets of a lattice, whose meet is the bottom element. St001619The number of non-isomorphic sublattices of a lattice. St001666The number of non-isomorphic subposets of a lattice which are lattices. St001833The number of linear intervals in a lattice. St001677The number of non-degenerate subsets of a lattice whose meet is the bottom element. St001620The number of sublattices of a lattice. St001679The number of subsets of a lattice whose meet is the bottom element. St001651The Frankl number of a lattice. St000068The number of minimal elements in a poset. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition.