edit this statistic or download as text // json
Identifier
Values
([],1) => 1
([],2) => 1
([(0,1)],2) => 2
([],3) => 1
([(1,2)],3) => 2
([(0,2),(1,2)],3) => 3
([(0,1),(0,2),(1,2)],3) => 2
([],4) => 1
([(2,3)],4) => 2
([(1,3),(2,3)],4) => 3
([(0,3),(1,3),(2,3)],4) => 4
([(0,3),(1,2)],4) => 2
([(0,3),(1,2),(2,3)],4) => 4
([(1,2),(1,3),(2,3)],4) => 2
([(0,3),(1,2),(1,3),(2,3)],4) => 3
([(0,2),(0,3),(1,2),(1,3)],4) => 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
([],5) => 1
([(3,4)],5) => 2
([(2,4),(3,4)],5) => 3
([(1,4),(2,4),(3,4)],5) => 4
([(0,4),(1,4),(2,4),(3,4)],5) => 5
([(1,4),(2,3)],5) => 2
([(1,4),(2,3),(3,4)],5) => 4
([(0,1),(2,4),(3,4)],5) => 3
([(2,3),(2,4),(3,4)],5) => 2
([(0,4),(1,4),(2,3),(3,4)],5) => 6
([(1,4),(2,3),(2,4),(3,4)],5) => 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
([(1,3),(1,4),(2,3),(2,4)],5) => 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 5
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 4
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
([(0,4),(1,3),(2,3),(2,4)],5) => 5
([(0,1),(2,3),(2,4),(3,4)],5) => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 4
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 4
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 4
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 4
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 4
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
([],6) => 1
([(4,5)],6) => 2
([(3,5),(4,5)],6) => 3
([(2,5),(3,5),(4,5)],6) => 4
([(1,5),(2,5),(3,5),(4,5)],6) => 5
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
([(2,5),(3,4)],6) => 2
([(2,5),(3,4),(4,5)],6) => 4
([(1,2),(3,5),(4,5)],6) => 3
([(3,4),(3,5),(4,5)],6) => 2
([(1,5),(2,5),(3,4),(4,5)],6) => 6
([(0,1),(2,5),(3,5),(4,5)],6) => 4
([(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 8
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 5
([(2,4),(2,5),(3,4),(3,5)],6) => 3
([(0,5),(1,5),(2,4),(3,4)],6) => 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 5
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 8
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 4
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 7
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 7
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 6
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 6
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 6
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 5
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
([(0,5),(1,4),(2,3)],6) => 2
([(1,5),(2,4),(3,4),(3,5)],6) => 5
([(0,1),(2,5),(3,4),(4,5)],6) => 4
([(1,2),(3,4),(3,5),(4,5)],6) => 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 8
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 4
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 6
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 4
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 4
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 6
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 4
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => 7
>>> Load all 208 entries. <<<
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 4
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 4
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 6
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 5
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 6
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => 3
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => 3
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 7
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => 5
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => 5
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 6
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => 5
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => 6
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 6
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 6
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => 6
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 6
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 6
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 5
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 4
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 6
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 5
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 4
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 5
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => 6
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 5
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 5
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 5
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 7
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 5
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 5
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 6
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 5
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 5
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 5
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 5
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 4
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => 2
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => 5
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => 4
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 4
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => 4
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 4
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) => 5
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 4
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 4
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 4
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 4
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 3
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of nonisomorphic vertex-induced subtrees.
References
[1] Mubayi, D., Verstraete, J. The number of trees in a graph arXiv:1511.07274
Code
def statistic(G):
    V = G.vertices()
    indSubG = set()
    for subV in Subsets(V):
        subG = G.subgraph(subV)
        if subG.is_tree():
            indSubG.add(subG.canonical_label().copy(immutable=True))
    return len(indSubG)
Created
Nov 24, 2015 at 17:41 by Christian Stump
Updated
Nov 25, 2015 at 11:11 by Christian Stump