Your data matches 380 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00197: Lattices lattice of congruencesLattices
Mp00193: Lattices to posetPosets
St000068: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> 1
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(5,4),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(5,2),(5,3),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> 1
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,4),(7,3)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,2),(6,1),(6,4),(6,5)],8)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,3),(0,5),(1,7),(2,6),(3,7),(4,1),(4,6),(5,2),(5,4),(6,7)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,1),(5,2),(6,4),(6,5)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1
([(0,5),(1,7),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7)],8)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,7),(5,6),(7,1)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,7),(5,1),(7,6)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,2),(0,3),(0,4),(0,5),(2,7),(3,7),(4,7),(5,6),(6,1),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(3,7),(4,7),(5,7),(6,1),(7,2)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6),(5,7),(6,7),(7,1)],8)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> 1
Description
The number of minimal elements in a poset.
Mp00197: Lattices lattice of congruencesLattices
Mp00193: Lattices to posetPosets
St000069: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> 1
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(5,4),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(5,2),(5,3),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> 1
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,4),(7,3)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,2),(6,1),(6,4),(6,5)],8)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,3),(0,5),(1,7),(2,6),(3,7),(4,1),(4,6),(5,2),(5,4),(6,7)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,1),(5,2),(6,4),(6,5)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1
([(0,5),(1,7),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7)],8)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,7),(5,6),(7,1)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,7),(5,1),(7,6)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,2),(0,3),(0,4),(0,5),(2,7),(3,7),(4,7),(5,6),(6,1),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(3,7),(4,7),(5,7),(6,1),(7,2)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6),(5,7),(6,7),(7,1)],8)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> 1
Description
The number of maximal elements of a poset.
Mp00197: Lattices lattice of congruencesLattices
Mp00263: Lattices join irreduciblesPosets
St000640: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(5,4),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(5,2),(5,3),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(1,2),(2,3)],4)
=> 1
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,4),(7,3)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(1,2),(2,3)],4)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,2),(6,1),(6,4),(6,5)],8)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,3),(0,5),(1,7),(2,6),(3,7),(4,1),(4,6),(5,2),(5,4),(6,7)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,1),(5,2),(6,4),(6,5)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(1,2),(2,3)],4)
=> 1
([(0,5),(1,7),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7)],8)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,7),(5,6),(7,1)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,7),(5,1),(7,6)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,3),(0,4),(0,5),(2,7),(3,7),(4,7),(5,6),(6,1),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(3,7),(4,7),(5,7),(6,1),(7,2)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6),(5,7),(6,7),(7,1)],8)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
Description
The rank of the largest boolean interval in a poset.
Mp00196: Lattices The modular quotient of a lattice.Lattices
Mp00197: Lattices lattice of congruencesLattices
St001719: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(5,4),(7,6)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(5,2),(5,3),(6,7)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,4),(7,3)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,2),(6,1),(6,4),(6,5)],8)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,5),(1,7),(2,6),(3,7),(4,1),(4,6),(5,2),(5,4),(6,7)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,1),(5,2),(6,4),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,5),(1,7),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7)],8)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1)],8)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,7),(5,6),(7,1)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,7),(5,1),(7,6)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(2,7),(3,7),(4,7),(5,6),(6,1),(7,6)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(3,7),(4,7),(5,7),(6,1),(7,2)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(6,7)],8)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6),(5,7),(6,7),(7,1)],8)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1
Description
The number of shortest chains of small intervals from the bottom to the top in a lattice. An interval $[a, b]$ in a lattice is small if $b$ is a join of elements covering $a$.
Mp00196: Lattices The modular quotient of a lattice.Lattices
Mp00197: Lattices lattice of congruencesLattices
St001820: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(5,4),(7,6)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(5,2),(5,3),(6,7)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,4),(7,3)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,2),(6,1),(6,4),(6,5)],8)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,5),(1,7),(2,6),(3,7),(4,1),(4,6),(5,2),(5,4),(6,7)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,1),(5,2),(6,4),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,5),(1,7),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7)],8)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1)],8)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,7),(5,6),(7,1)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,7),(5,1),(7,6)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(2,7),(3,7),(4,7),(5,6),(6,1),(7,6)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(3,7),(4,7),(5,7),(6,1),(7,2)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(6,7)],8)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6),(5,7),(6,7),(7,1)],8)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1
Description
The size of the image of the pop stack sorting operator. The pop stack sorting operator is defined by $Pop_L^\downarrow(x) = x\wedge\bigwedge\{y\in L\mid y\lessdot x\}$. This statistic returns the size of $Pop_L^\downarrow(L)\}$.
Mp00197: Lattices lattice of congruencesLattices
Mp00263: Lattices join irreduciblesPosets
St001890: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(5,4),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(5,2),(5,3),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(1,2),(2,3)],4)
=> 1
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,4),(7,3)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(1,2),(2,3)],4)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,2),(6,1),(6,4),(6,5)],8)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,3),(0,5),(1,7),(2,6),(3,7),(4,1),(4,6),(5,2),(5,4),(6,7)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,1),(5,2),(6,4),(6,5)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(1,2),(2,3)],4)
=> 1
([(0,5),(1,7),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7)],8)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,7),(5,6),(7,1)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,7),(5,1),(7,6)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,3),(0,4),(0,5),(2,7),(3,7),(4,7),(5,6),(6,1),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(3,7),(4,7),(5,7),(6,1),(7,2)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6),(5,7),(6,7),(7,1)],8)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
Description
The maximum magnitude of the Möbius function of a poset. The '''Möbius function''' of a poset is the multiplicative inverse of the zeta function in the incidence algebra. The Möbius value $\mu(x, y)$ is equal to the signed sum of chains from $x$ to $y$, where odd-length chains are counted with a minus sign, so this statistic is bounded above by the total number of chains in the poset.
Mp00197: Lattices lattice of congruencesLattices
Mp00263: Lattices join irreduciblesPosets
St001942: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(5,4),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(5,2),(5,3),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(1,2),(2,3)],4)
=> 1
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,4),(7,3)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(1,2),(2,3)],4)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,2),(6,1),(6,4),(6,5)],8)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,3),(0,5),(1,7),(2,6),(3,7),(4,1),(4,6),(5,2),(5,4),(6,7)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,1),(5,2),(6,4),(6,5)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(1,2),(2,3)],4)
=> 1
([(0,5),(1,7),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7)],8)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,7),(5,6),(7,1)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,7),(5,1),(7,6)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,3),(0,4),(0,5),(2,7),(3,7),(4,7),(5,6),(6,1),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(3,7),(4,7),(5,7),(6,1),(7,2)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6),(5,7),(6,7),(7,1)],8)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 1
Description
The number of loops of the quiver corresponding to the reduced incidence algebra of a poset.
Mp00197: Lattices lattice of congruencesLattices
Mp00263: Lattices join irreduciblesPosets
St001633: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 0 = 1 - 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 0 = 1 - 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 0 = 1 - 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 0 = 1 - 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 0 = 1 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 0 = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 0 = 1 - 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 0 = 1 - 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(5,4),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 0 = 1 - 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(5,2),(5,3),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(1,2),(2,3)],4)
=> 0 = 1 - 1
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 0 = 1 - 1
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,4),(7,3)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(1,2),(2,3)],4)
=> 0 = 1 - 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,2),(6,1),(6,4),(6,5)],8)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 0 = 1 - 1
([(0,3),(0,5),(1,7),(2,6),(3,7),(4,1),(4,6),(5,2),(5,4),(6,7)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,1),(5,2),(6,4),(6,5)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(1,2),(2,3)],4)
=> 0 = 1 - 1
([(0,5),(1,7),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7)],8)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,7),(5,6),(7,1)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,7),(5,1),(7,6)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(2,7),(3,7),(4,7),(5,6),(6,1),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(3,7),(4,7),(5,7),(6,1),(7,2)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6),(5,7),(6,7),(7,1)],8)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(1,2),(1,3)],4)
=> 0 = 1 - 1
Description
The number of simple modules with projective dimension two in the incidence algebra of the poset.
Mp00197: Lattices lattice of congruencesLattices
Mp00197: Lattices lattice of congruencesLattices
St001651: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(5,4),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(5,2),(5,3),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,4),(7,3)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,2),(6,1),(6,4),(6,5)],8)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,3),(0,5),(1,7),(2,6),(3,7),(4,1),(4,6),(5,2),(5,4),(6,7)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,1),(5,2),(6,4),(6,5)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(0,5),(1,7),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7)],8)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,7),(5,6),(7,1)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,7),(5,1),(7,6)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(2,7),(3,7),(4,7),(5,6),(6,1),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(3,7),(4,7),(5,7),(6,1),(7,2)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6),(5,7),(6,7),(7,1)],8)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
Description
The Frankl number of a lattice. For a lattice $L$ on at least two elements, this is $$ \max_x(|L|-2|[x, 1]|), $$ where we maximize over all join irreducible elements and $[x, 1]$ denotes the interval from $x$ to the top element. Frankl's conjecture asserts that this number is non-negative, and zero if and only if $L$ is a Boolean lattice.
Mp00196: Lattices The modular quotient of a lattice.Lattices
Mp00197: Lattices lattice of congruencesLattices
St001845: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(5,4),(7,6)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(5,2),(5,3),(6,7)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,4),(7,3)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,2),(6,1),(6,4),(6,5)],8)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,3),(0,5),(1,7),(2,6),(3,7),(4,1),(4,6),(5,2),(5,4),(6,7)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,1),(5,2),(6,4),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,5),(1,7),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7)],8)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1)],8)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,7),(5,6),(7,1)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,7),(5,1),(7,6)],8)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(2,7),(3,7),(4,7),(5,6),(6,1),(7,6)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(3,7),(4,7),(5,7),(6,1),(7,2)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(6,7)],8)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6),(5,7),(6,7),(7,1)],8)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
Description
The number of join irreducibles minus the rank of a lattice. A lattice is join-extremal, if this statistic is $0$.
The following 370 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001846The number of elements which do not have a complement in the lattice. St001613The binary logarithm of the size of the center of a lattice. St001621The number of atoms of a lattice. St001681The number of inclusion-wise minimal subsets of a lattice, whose meet is the bottom element. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001881The number of factors of a lattice as a Cartesian product of lattices. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001561The value of the elementary symmetric function evaluated at 1. St001625The Möbius invariant of a lattice. St001677The number of non-degenerate subsets of a lattice whose meet is the bottom element. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St000150The floored half-sum of the multiplicities of a partition. St000257The number of distinct parts of a partition that occur at least twice. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St000775The multiplicity of the largest eigenvalue in a graph. St000785The number of distinct colouring schemes of a graph. St001272The number of graphs with the same degree sequence. St001316The domatic number of a graph. St001496The number of graphs with the same Laplacian spectrum as the given graph. St001624The breadth of a lattice. St000323The minimal crossing number of a graph. St000351The determinant of the adjacency matrix of a graph. St000368The Altshuler-Steinberg determinant of a graph. St000370The genus of a graph. St000449The number of pairs of vertices of a graph with distance 4. St000671The maximin edge-connectivity for choosing a subgraph. St001119The length of a shortest maximal path in a graph. St001271The competition number of a graph. St001305The number of induced cycles on four vertices in a graph. St001307The number of induced stars on four vertices in a graph. St001309The number of four-cliques in a graph. St001310The number of induced diamond graphs in a graph. St001323The independence gap of a graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001327The minimal number of occurrences of the split-pattern in a linear ordering of the vertices of the graph. St001328The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001357The maximal degree of a regular spanning subgraph of a graph. St001395The number of strictly unfriendly partitions of a graph. St001689The number of celebrities in a graph. St001702The absolute value of the determinant of the adjacency matrix of a graph. St001793The difference between the clique number and the chromatic number of a graph. St001794Half the number of sets of vertices in a graph which are dominating and non-blocking. St001797The number of overfull subgraphs of a graph. St000160The multiplicity of the smallest part of a partition. St000706The product of the factorials of the multiplicities of an integer partition. St000759The smallest missing part in an integer partition. St000897The number of different multiplicities of parts of an integer partition. St000993The multiplicity of the largest part of an integer partition. St000475The number of parts equal to 1 in a partition. St000929The constant term of the character polynomial of an integer partition. St001091The number of parts in an integer partition whose next smaller part has the same size. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St000143The largest repeated part of a partition. St000908The length of the shortest maximal antichain in a poset. St001301The first Betti number of the order complex associated with the poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St000286The number of connected components of the complement of a graph. St000287The number of connected components of a graph. St001518The number of graphs with the same ordinary spectrum as the given graph. St000095The number of triangles of a graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000274The number of perfect matchings of a graph. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000310The minimal degree of a vertex of a graph. St000322The skewness of a graph. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001578The minimal number of edges to add or remove to make a graph a line graph. St001871The number of triconnected components of a graph. St000298The order dimension or Dushnik-Miller dimension of a poset. St001568The smallest positive integer that does not appear twice in the partition. St000181The number of connected components of the Hasse diagram for the poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001533The largest coefficient of the Poincare polynomial of the poset cone. St000379The number of Hamiltonian cycles in a graph. St000699The toughness times the least common multiple of 1,. St001281The normalized isoperimetric number of a graph. St001396Number of triples of incomparable elements in a finite poset. St001964The interval resolution global dimension of a poset. St000914The sum of the values of the Möbius function of a poset. St000097The order of the largest clique of the graph. St001711The number of permutations such that conjugation with a permutation of given cycle type yields the squared permutation. St001095The number of non-isomorphic posets with precisely one further covering relation. St000098The chromatic number of a graph. St001877Number of indecomposable injective modules with projective dimension 2. St000266The number of spanning subgraphs of a graph with the same connected components. St000267The number of maximal spanning forests contained in a graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000776The maximal multiplicity of an eigenvalue in a graph. St001333The cardinality of a minimal edge-isolating set of a graph. St001475The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,0). St001476The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,-1). St001546The number of monomials in the Tutte polynomial of a graph. St001743The discrepancy of a graph. St000283The size of the preimage of the map 'to graph' from Binary trees to Graphs. St000403The Szeged index minus the Wiener index of a graph. St000636The hull number of a graph. St000637The length of the longest cycle in a graph. St000948The chromatic discriminant of a graph. St001029The size of the core of a graph. St001069The coefficient of the monomial xy of the Tutte polynomial of the graph. St001071The beta invariant of the graph. St001109The number of proper colourings of a graph with as few colours as possible. St001111The weak 2-dynamic chromatic number of a graph. St001311The cyclomatic number of a graph. St001317The minimal number of occurrences of the forest-pattern in a linear ordering of the vertices of the graph. St001320The minimal number of occurrences of the path-pattern in a linear ordering of the vertices of the graph. St001329The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. St001331The size of the minimal feedback vertex set. St001335The cardinality of a minimal cycle-isolating set of a graph. St001354The number of series nodes in the modular decomposition of a graph. St001367The smallest number which does not occur as degree of a vertex in a graph. St001638The book thickness of a graph. St001654The monophonic hull number of a graph. St001716The 1-improper chromatic number of a graph. St001736The total number of cycles in a graph. St001795The binary logarithm of the evaluation of the Tutte polynomial of the graph at (x,y) equal to (-1,-1). St001796The absolute value of the quotient of the Tutte polynomial of the graph at (1,1) and (-1,-1). St000633The size of the automorphism group of a poset. St001399The distinguishing number of a poset. St000850The number of 1/2-balanced pairs in a poset. St001472The permanent of the Coxeter matrix of the poset. St000741The Colin de Verdière graph invariant. St001574The minimal number of edges to add or remove to make a graph regular. St001576The minimal number of edges to add or remove to make a graph vertex transitive. St001742The difference of the maximal and the minimal degree in a graph. St000096The number of spanning trees of a graph. St000276The size of the preimage of the map 'to graph' from Ordered trees to Graphs. St000311The number of vertices of odd degree in a graph. St000315The number of isolated vertices of a graph. St001060The distinguishing index of a graph. St001642The Prague dimension of a graph. St001690The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path. St001827The number of two-component spanning forests of a graph. St001618The cardinality of the Frattini sublattice of a lattice. St001720The minimal length of a chain of small intervals in a lattice. St000635The number of strictly order preserving maps of a poset into itself. St001644The dimension of a graph. St000422The energy of a graph, if it is integral. St000454The largest eigenvalue of a graph if it is integral. St000718The largest Laplacian eigenvalue of a graph if it is integral. St001330The hat guessing number of a graph. St001545The second Elser number of a connected graph. St001703The villainy of a graph. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001623The number of doubly irreducible elements of a lattice. St001626The number of maximal proper sublattices of a lattice. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001875The number of simple modules with projective dimension at most 1. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice. St001754The number of tolerances of a finite lattice. St000632The jump number of the poset. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000911The number of maximal antichains of maximal size in a poset. St001397Number of pairs of incomparable elements in a finite poset. St001398Number of subsets of size 3 of elements in a poset that form a "v". St001635The trace of the square of the Coxeter matrix of the incidence algebra of a poset. St001718The number of non-empty open intervals in a poset. St000080The rank of the poset. St000100The number of linear extensions of a poset. St000281The size of the preimage of the map 'to poset' from Binary trees to Posets. St000282The size of the preimage of the map 'to poset' from Ordered trees to Posets. St000307The number of rowmotion orbits of a poset. St000642The size of the smallest orbit of antichains under Panyushev complementation. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St000907The number of maximal antichains of minimal length in a poset. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001268The size of the largest ordinal summand in the poset. St001510The number of self-evacuating linear extensions of a finite poset. St001534The alternating sum of the coefficients of the Poincare polynomial of the poset cone. St001631The number of simple modules $S$ with $dim Ext^1(S,A)=1$ in the incidence algebra $A$ of the poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St001779The order of promotion on the set of linear extensions of a poset. St001902The number of potential covers of a poset. St000524The number of posets with the same order polynomial. St000525The number of posets with the same zeta polynomial. St000526The number of posets with combinatorially isomorphic order polytopes. St000528The height of a poset. St000680The Grundy value for Hackendot on posets. St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St000912The number of maximal antichains in a poset. St001300The rank of the boundary operator in degree 1 of the chain complex of the order complex of the poset. St001343The dimension of the reduced incidence algebra of a poset. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St000189The number of elements in the poset. St000327The number of cover relations in a poset. St000643The size of the largest orbit of antichains under Panyushev complementation. St000656The number of cuts of a poset. St001717The largest size of an interval in a poset. St001782The order of rowmotion on the set of order ideals of a poset. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000104The number of facets in the order polytope of this poset. St000151The number of facets in the chain polytope of the poset. St001664The number of non-isomorphic subposets of a poset. St000639The number of relations in a poset. St000641The number of non-empty boolean intervals in a poset. St000180The number of chains of a poset. St001815The number of order preserving surjections from a poset to a total order. St001909The number of interval-closed sets of a poset. St001813The product of the sizes of the principal order filters in a poset. St001709The number of homomorphisms to the three element chain of a poset. St000634The number of endomorphisms of a poset. St000264The girth of a graph, which is not a tree. St001118The acyclic chromatic index of a graph. St000455The second largest eigenvalue of a graph if it is integral. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000655The length of the minimal rise of a Dyck path. St001722The number of minimal chains with small intervals between a binary word and the top element. St000629The defect of a binary word. St000687The dimension of $Hom(I,P)$ for the LNakayama algebra of a Dyck path. St000921The number of internal inversions of a binary word. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001137Number of simple modules that are 3-regular in the corresponding Nakayama algebra. St001139The number of occurrences of hills of size 2 in a Dyck path. St001593This is the number of standard Young tableaux of the given shifted shape. St000667The greatest common divisor of the parts of the partition. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000478Another weight of a partition according to Alladi. St000713The dimension of the irreducible representation of Sp(4) labelled by an integer partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000715The number of semistandard Young tableaux of given shape and entries at most 3. St000716The dimension of the irreducible representation of Sp(6) labelled by an integer partition. St000297The number of leading ones in a binary word. St000326The position of the first one in a binary word after appending a 1 at the end. St000627The exponent of a binary word. St000296The length of the symmetric border of a binary word. St000733The row containing the largest entry of a standard tableau. St000745The index of the last row whose first entry is the row number in a standard Young tableau. St001696The natural major index of a standard Young tableau. St001256Number of simple reflexive modules that are 2-stable reflexive. St001481The minimal height of a peak of a Dyck path. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St000659The number of rises of length at least 2 of a Dyck path. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St000439The position of the first down step of a Dyck path. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001371The length of the longest Yamanouchi prefix of a binary word. St001732The number of peaks visible from the left. St001884The number of borders of a binary word. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001695The natural comajor index of a standard Young tableau. St001698The comajor index of a standard tableau minus the weighted size of its shape. St001699The major index of a standard tableau minus the weighted size of its shape. St001712The number of natural descents of a standard Young tableau. St000183The side length of the Durfee square of an integer partition. St000256The number of parts from which one can substract 2 and still get an integer partition. St000480The number of lower covers of a partition in dominance order. St000481The number of upper covers of a partition in dominance order. St000657The smallest part of an integer composition. St000781The number of proper colouring schemes of a Ferrers diagram. St000900The minimal number of repetitions of a part in an integer composition. St000902 The minimal number of repetitions of an integer composition. St001121The multiplicity of the irreducible representation indexed by the partition in the Kronecker square corresponding to the partition. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001280The number of parts of an integer partition that are at least two. St001484The number of singletons of an integer partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St000159The number of distinct parts of the integer partition. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000531The leading coefficient of the rook polynomial of an integer partition. St000783The side length of the largest staircase partition fitting into a partition. St001175The size of a partition minus the hook length of the base cell. St001432The order dimension of the partition. St001657The number of twos in an integer partition. St000318The number of addable cells of the Ferrers diagram of an integer partition. St000025The number of initial rises of a Dyck path. St000026The position of the first return of a Dyck path. St000383The last part of an integer composition. St000816The number of standard composition tableaux of the composition. St001022Number of simple modules with projective dimension 3 in the Nakayama algebra corresponding to the Dyck path. St001498The normalised height of a Nakayama algebra with magnitude 1. St000312The number of leaves in a graph. St001125The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra. St000535The rank-width of a graph. St001353The number of prime nodes in the modular decomposition of a graph. St001393The induced matching number of a graph. St000272The treewidth of a graph. St000536The pathwidth of a graph. St000544The cop number of a graph. St001261The Castelnuovo-Mumford regularity of a graph. St001277The degeneracy of a graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St001358The largest degree of a regular subgraph of a graph. St001792The arboricity of a graph. St000172The Grundy number of a graph. St000258The burning number of a graph. St000387The matching number of a graph. St001116The game chromatic number of a graph. St001494The Alon-Tarsi number of a graph. St001580The acyclic chromatic number of a graph. St001963The tree-depth of a graph. St000273The domination number of a graph. St000553The number of blocks of a graph. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St000762The sum of the positions of the weak records of an integer composition. St000763The sum of the positions of the strong records of an integer composition. St000764The number of strong records in an integer composition. St000765The number of weak records in an integer composition. St000805The number of peaks of the associated bargraph. St000916The packing number of a graph. St000917The open packing number of a graph. St000986The multiplicity of the eigenvalue zero of the adjacency matrix of the graph. St001282The number of graphs with the same chromatic polynomial. St001352The number of internal nodes in the modular decomposition of a graph. St001672The restrained domination number of a graph. St001673The degree of asymmetry of an integer composition. St001739The number of graphs with the same edge polytope as the given graph. St001740The number of graphs with the same symmetric edge polytope as the given graph. St001776The degree of the minimal polynomial of the largest Laplacian eigenvalue of a graph. St001829The common independence number of a graph. St000091The descent variation of a composition. St000447The number of pairs of vertices of a graph with distance 3. St000552The number of cut vertices of a graph. St000758The length of the longest staircase fitting into an integer composition. St000761The number of ascents in an integer composition. St000768The number of peaks in an integer composition. St000778The metric dimension of a graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000807The sum of the heights of the valleys of the associated bargraph. St000918The 2-limited packing number of a graph. St001057The Grundy value of the game of creating an independent set in a graph. St001347The number of pairs of vertices of a graph having the same neighbourhood. St001363The Euler characteristic of a graph according to Knill. St001463The number of distinct columns in the nullspace of a graph. St001570The minimal number of edges to add to make a graph Hamiltonian. St001691The number of kings in a graph. St001734The lettericity of a graph. St001826The maximal number of leaves on a vertex of a graph. St001957The number of Hasse diagrams with a given underlying undirected graph. St000985The number of positive eigenvalues of the adjacency matrix of the graph. St001674The number of vertices of the largest induced star graph in the graph. St001093The detour number of a graph. St001600The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs. St001322The size of a minimal independent dominating set in a graph. St001339The irredundance number of a graph. St001479The number of bridges of a graph. St001525The number of symmetric hooks on the diagonal of a partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001588The number of distinct odd parts smaller than the largest even part in an integer partition.