Processing math: 100%

Your data matches 31 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000029: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 0
[2,1] => 1
[1,2,3] => 0
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 2
[3,1,2] => 2
[3,2,1] => 2
[1,2,3,4] => 0
[1,2,4,3] => 1
[1,3,2,4] => 1
[1,3,4,2] => 2
[1,4,2,3] => 2
[1,4,3,2] => 2
[2,1,3,4] => 1
[2,1,4,3] => 2
[2,3,1,4] => 2
[2,3,4,1] => 3
[2,4,1,3] => 3
[2,4,3,1] => 3
[3,1,2,4] => 2
[3,1,4,2] => 3
[3,2,1,4] => 2
[3,2,4,1] => 3
[3,4,1,2] => 4
[3,4,2,1] => 4
[4,1,2,3] => 3
[4,1,3,2] => 3
[4,2,1,3] => 3
[4,2,3,1] => 3
[4,3,1,2] => 4
[4,3,2,1] => 4
[1,2,3,4,5] => 0
[1,2,3,5,4] => 1
[1,2,4,3,5] => 1
[1,2,4,5,3] => 2
[1,2,5,3,4] => 2
[1,2,5,4,3] => 2
[1,3,2,4,5] => 1
[1,3,2,5,4] => 2
[1,3,4,2,5] => 2
[1,3,4,5,2] => 3
[1,3,5,2,4] => 3
[1,3,5,4,2] => 3
[1,4,2,3,5] => 2
[1,4,2,5,3] => 3
[1,4,3,2,5] => 2
[1,4,3,5,2] => 3
[1,4,5,2,3] => 4
Description
The depth of a permutation. This is given by dp(σ)=σi>i(σii)=|{ij:σi>j}|. The depth is half of the total displacement [4], Problem 5.1.1.28, or Spearman’s disarray [3] i|σii|. Permutations with depth at most 1 are called ''almost-increasing'' in [5].
Mp00236: Permutations Clarke-Steingrimsson-Zeng inversePermutations
St000030: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1] => 0
[1,2] => [1,2] => 0
[2,1] => [2,1] => 1
[1,2,3] => [1,2,3] => 0
[1,3,2] => [1,3,2] => 1
[2,1,3] => [2,1,3] => 1
[2,3,1] => [3,2,1] => 2
[3,1,2] => [3,1,2] => 2
[3,2,1] => [2,3,1] => 2
[1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => 1
[1,3,2,4] => [1,3,2,4] => 1
[1,3,4,2] => [1,4,3,2] => 2
[1,4,2,3] => [1,4,2,3] => 2
[1,4,3,2] => [1,3,4,2] => 2
[2,1,3,4] => [2,1,3,4] => 1
[2,1,4,3] => [2,1,4,3] => 2
[2,3,1,4] => [3,2,1,4] => 2
[2,3,4,1] => [4,3,2,1] => 3
[2,4,1,3] => [4,2,1,3] => 3
[2,4,3,1] => [3,4,2,1] => 3
[3,1,2,4] => [3,1,2,4] => 2
[3,1,4,2] => [4,3,1,2] => 3
[3,2,1,4] => [2,3,1,4] => 2
[3,2,4,1] => [2,4,3,1] => 3
[3,4,1,2] => [4,1,3,2] => 4
[3,4,2,1] => [4,2,3,1] => 4
[4,1,2,3] => [4,1,2,3] => 3
[4,1,3,2] => [3,4,1,2] => 3
[4,2,1,3] => [2,4,1,3] => 3
[4,2,3,1] => [2,3,4,1] => 3
[4,3,1,2] => [3,1,4,2] => 4
[4,3,2,1] => [3,2,4,1] => 4
[1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,5,4] => 1
[1,2,4,3,5] => [1,2,4,3,5] => 1
[1,2,4,5,3] => [1,2,5,4,3] => 2
[1,2,5,3,4] => [1,2,5,3,4] => 2
[1,2,5,4,3] => [1,2,4,5,3] => 2
[1,3,2,4,5] => [1,3,2,4,5] => 1
[1,3,2,5,4] => [1,3,2,5,4] => 2
[1,3,4,2,5] => [1,4,3,2,5] => 2
[1,3,4,5,2] => [1,5,4,3,2] => 3
[1,3,5,2,4] => [1,5,3,2,4] => 3
[1,3,5,4,2] => [1,4,5,3,2] => 3
[1,4,2,3,5] => [1,4,2,3,5] => 2
[1,4,2,5,3] => [1,5,4,2,3] => 3
[1,4,3,2,5] => [1,3,4,2,5] => 2
[1,4,3,5,2] => [1,3,5,4,2] => 3
[1,4,5,2,3] => [1,5,2,4,3] => 4
Description
The sum of the descent differences of a permutations. This statistic is given by πiDes(π)(πiπi+1). See [[St000111]] and [[St000154]] for the sum of the descent tops and the descent bottoms, respectively. This statistic was studied in [1] and [2] where is was called the ''drop'' of a permutation.
Mp00170: Permutations to signed permutationSigned permutations
St001894: Signed permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1] => 0
[1,2] => [1,2] => 0
[2,1] => [2,1] => 1
[1,2,3] => [1,2,3] => 0
[1,3,2] => [1,3,2] => 1
[2,1,3] => [2,1,3] => 1
[2,3,1] => [2,3,1] => 2
[3,1,2] => [3,1,2] => 2
[3,2,1] => [3,2,1] => 2
[1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => 1
[1,3,2,4] => [1,3,2,4] => 1
[1,3,4,2] => [1,3,4,2] => 2
[1,4,2,3] => [1,4,2,3] => 2
[1,4,3,2] => [1,4,3,2] => 2
[2,1,3,4] => [2,1,3,4] => 1
[2,1,4,3] => [2,1,4,3] => 2
[2,3,1,4] => [2,3,1,4] => 2
[2,3,4,1] => [2,3,4,1] => 3
[2,4,1,3] => [2,4,1,3] => 3
[2,4,3,1] => [2,4,3,1] => 3
[3,1,2,4] => [3,1,2,4] => 2
[3,1,4,2] => [3,1,4,2] => 3
[3,2,1,4] => [3,2,1,4] => 2
[3,2,4,1] => [3,2,4,1] => 3
[3,4,1,2] => [3,4,1,2] => 4
[3,4,2,1] => [3,4,2,1] => 4
[4,1,2,3] => [4,1,2,3] => 3
[4,1,3,2] => [4,1,3,2] => 3
[4,2,1,3] => [4,2,1,3] => 3
[4,2,3,1] => [4,2,3,1] => 3
[4,3,1,2] => [4,3,1,2] => 4
[4,3,2,1] => [4,3,2,1] => 4
[1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,5,4] => 1
[1,2,4,3,5] => [1,2,4,3,5] => 1
[1,2,4,5,3] => [1,2,4,5,3] => 2
[1,2,5,3,4] => [1,2,5,3,4] => 2
[1,2,5,4,3] => [1,2,5,4,3] => 2
[1,3,2,4,5] => [1,3,2,4,5] => 1
[1,3,2,5,4] => [1,3,2,5,4] => 2
[1,3,4,2,5] => [1,3,4,2,5] => 2
[1,3,4,5,2] => [1,3,4,5,2] => 3
[1,3,5,2,4] => [1,3,5,2,4] => 3
[1,3,5,4,2] => [1,3,5,4,2] => 3
[1,4,2,3,5] => [1,4,2,3,5] => 2
[1,4,2,5,3] => [1,4,2,5,3] => 3
[1,4,3,2,5] => [1,4,3,2,5] => 2
[1,4,3,5,2] => [1,4,3,5,2] => 3
[1,4,5,2,3] => [1,4,5,2,3] => 4
Description
The depth of a signed permutation. The depth of a positive root is its rank in the root poset. The depth of an element of a Coxeter group is the minimal sum of depths for any representation as product of reflections.
Mp00240: Permutations weak exceedance partitionSet partitions
Mp00080: Set partitions to permutationPermutations
St000224: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => {{1}}
=> [1] => 0
[1,2] => {{1},{2}}
=> [1,2] => 0
[2,1] => {{1,2}}
=> [2,1] => 1
[1,2,3] => {{1},{2},{3}}
=> [1,2,3] => 0
[1,3,2] => {{1},{2,3}}
=> [1,3,2] => 1
[2,1,3] => {{1,2},{3}}
=> [2,1,3] => 1
[2,3,1] => {{1,2,3}}
=> [2,3,1] => 2
[3,1,2] => {{1,3},{2}}
=> [3,2,1] => 2
[3,2,1] => {{1,3},{2}}
=> [3,2,1] => 2
[1,2,3,4] => {{1},{2},{3},{4}}
=> [1,2,3,4] => 0
[1,2,4,3] => {{1},{2},{3,4}}
=> [1,2,4,3] => 1
[1,3,2,4] => {{1},{2,3},{4}}
=> [1,3,2,4] => 1
[1,3,4,2] => {{1},{2,3,4}}
=> [1,3,4,2] => 2
[1,4,2,3] => {{1},{2,4},{3}}
=> [1,4,3,2] => 2
[1,4,3,2] => {{1},{2,4},{3}}
=> [1,4,3,2] => 2
[2,1,3,4] => {{1,2},{3},{4}}
=> [2,1,3,4] => 1
[2,1,4,3] => {{1,2},{3,4}}
=> [2,1,4,3] => 2
[2,3,1,4] => {{1,2,3},{4}}
=> [2,3,1,4] => 2
[2,3,4,1] => {{1,2,3,4}}
=> [2,3,4,1] => 3
[2,4,1,3] => {{1,2,4},{3}}
=> [2,4,3,1] => 3
[2,4,3,1] => {{1,2,4},{3}}
=> [2,4,3,1] => 3
[3,1,2,4] => {{1,3},{2},{4}}
=> [3,2,1,4] => 2
[3,1,4,2] => {{1,3,4},{2}}
=> [3,2,4,1] => 3
[3,2,1,4] => {{1,3},{2},{4}}
=> [3,2,1,4] => 2
[3,2,4,1] => {{1,3,4},{2}}
=> [3,2,4,1] => 3
[3,4,1,2] => {{1,3},{2,4}}
=> [3,4,1,2] => 4
[3,4,2,1] => {{1,3},{2,4}}
=> [3,4,1,2] => 4
[4,1,2,3] => {{1,4},{2},{3}}
=> [4,2,3,1] => 3
[4,1,3,2] => {{1,4},{2},{3}}
=> [4,2,3,1] => 3
[4,2,1,3] => {{1,4},{2},{3}}
=> [4,2,3,1] => 3
[4,2,3,1] => {{1,4},{2},{3}}
=> [4,2,3,1] => 3
[4,3,1,2] => {{1,4},{2,3}}
=> [4,3,2,1] => 4
[4,3,2,1] => {{1,4},{2,3}}
=> [4,3,2,1] => 4
[1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => 0
[1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => 1
[1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => 1
[1,2,4,5,3] => {{1},{2},{3,4,5}}
=> [1,2,4,5,3] => 2
[1,2,5,3,4] => {{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => 2
[1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => 2
[1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => 1
[1,3,2,5,4] => {{1},{2,3},{4,5}}
=> [1,3,2,5,4] => 2
[1,3,4,2,5] => {{1},{2,3,4},{5}}
=> [1,3,4,2,5] => 2
[1,3,4,5,2] => {{1},{2,3,4,5}}
=> [1,3,4,5,2] => 3
[1,3,5,2,4] => {{1},{2,3,5},{4}}
=> [1,3,5,4,2] => 3
[1,3,5,4,2] => {{1},{2,3,5},{4}}
=> [1,3,5,4,2] => 3
[1,4,2,3,5] => {{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => 2
[1,4,2,5,3] => {{1},{2,4,5},{3}}
=> [1,4,3,5,2] => 3
[1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => 2
[1,4,3,5,2] => {{1},{2,4,5},{3}}
=> [1,4,3,5,2] => 3
[1,4,5,2,3] => {{1},{2,4},{3,5}}
=> [1,4,5,2,3] => 4
Description
The sorting index of a permutation. The sorting index counts the total distance that symbols move during a selection sort of a permutation. This sorting algorithm swaps symbol n into index n and then recursively sorts the first n-1 symbols. Compare this to [[St000018]], the number of inversions of a permutation, which is also the total distance that elements move during a bubble sort.
Mp00240: Permutations weak exceedance partitionSet partitions
St000728: Set partitions ⟶ ℤResult quality: 98% values known / values provided: 98%distinct values known / distinct values provided: 100%
Values
[1] => {{1}}
=> ? = 0
[1,2] => {{1},{2}}
=> 0
[2,1] => {{1,2}}
=> 1
[1,2,3] => {{1},{2},{3}}
=> 0
[1,3,2] => {{1},{2,3}}
=> 1
[2,1,3] => {{1,2},{3}}
=> 1
[2,3,1] => {{1,2,3}}
=> 2
[3,1,2] => {{1,3},{2}}
=> 2
[3,2,1] => {{1,3},{2}}
=> 2
[1,2,3,4] => {{1},{2},{3},{4}}
=> 0
[1,2,4,3] => {{1},{2},{3,4}}
=> 1
[1,3,2,4] => {{1},{2,3},{4}}
=> 1
[1,3,4,2] => {{1},{2,3,4}}
=> 2
[1,4,2,3] => {{1},{2,4},{3}}
=> 2
[1,4,3,2] => {{1},{2,4},{3}}
=> 2
[2,1,3,4] => {{1,2},{3},{4}}
=> 1
[2,1,4,3] => {{1,2},{3,4}}
=> 2
[2,3,1,4] => {{1,2,3},{4}}
=> 2
[2,3,4,1] => {{1,2,3,4}}
=> 3
[2,4,1,3] => {{1,2,4},{3}}
=> 3
[2,4,3,1] => {{1,2,4},{3}}
=> 3
[3,1,2,4] => {{1,3},{2},{4}}
=> 2
[3,1,4,2] => {{1,3,4},{2}}
=> 3
[3,2,1,4] => {{1,3},{2},{4}}
=> 2
[3,2,4,1] => {{1,3,4},{2}}
=> 3
[3,4,1,2] => {{1,3},{2,4}}
=> 4
[3,4,2,1] => {{1,3},{2,4}}
=> 4
[4,1,2,3] => {{1,4},{2},{3}}
=> 3
[4,1,3,2] => {{1,4},{2},{3}}
=> 3
[4,2,1,3] => {{1,4},{2},{3}}
=> 3
[4,2,3,1] => {{1,4},{2},{3}}
=> 3
[4,3,1,2] => {{1,4},{2,3}}
=> 4
[4,3,2,1] => {{1,4},{2,3}}
=> 4
[1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> 0
[1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> 1
[1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> 1
[1,2,4,5,3] => {{1},{2},{3,4,5}}
=> 2
[1,2,5,3,4] => {{1},{2},{3,5},{4}}
=> 2
[1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> 2
[1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> 1
[1,3,2,5,4] => {{1},{2,3},{4,5}}
=> 2
[1,3,4,2,5] => {{1},{2,3,4},{5}}
=> 2
[1,3,4,5,2] => {{1},{2,3,4,5}}
=> 3
[1,3,5,2,4] => {{1},{2,3,5},{4}}
=> 3
[1,3,5,4,2] => {{1},{2,3,5},{4}}
=> 3
[1,4,2,3,5] => {{1},{2,4},{3},{5}}
=> 2
[1,4,2,5,3] => {{1},{2,4,5},{3}}
=> 3
[1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> 2
[1,4,3,5,2] => {{1},{2,4,5},{3}}
=> 3
[1,4,5,2,3] => {{1},{2,4},{3,5}}
=> 4
[1,4,5,3,2] => {{1},{2,4},{3,5}}
=> 4
Description
The dimension of a set partition. This is the sum of the lengths of the arcs of a set partition. Equivalently, one obtains that this is the sum of the maximal entries of the blocks minus the sum of the minimal entries of the blocks. A slightly shifted definition of the dimension is [[St000572]].
Matching statistic: St000454
Mp00160: Permutations graph of inversionsGraphs
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000454: Graphs ⟶ ℤResult quality: 63% values known / values provided: 63%distinct values known / distinct values provided: 80%
Values
[1] => ([],1)
=> [1] => ([],1)
=> 0
[1,2] => ([],2)
=> [2] => ([],2)
=> 0
[2,1] => ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 1
[1,2,3] => ([],3)
=> [3] => ([],3)
=> 0
[1,3,2] => ([(1,2)],3)
=> [1,2] => ([(1,2)],3)
=> 1
[2,1,3] => ([(1,2)],3)
=> [1,2] => ([(1,2)],3)
=> 1
[2,3,1] => ([(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[3,1,2] => ([(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> ? = 2
[1,2,3,4] => ([],4)
=> [4] => ([],4)
=> 0
[1,2,4,3] => ([(2,3)],4)
=> [1,3] => ([(2,3)],4)
=> 1
[1,3,2,4] => ([(2,3)],4)
=> [1,3] => ([(2,3)],4)
=> 1
[1,3,4,2] => ([(1,3),(2,3)],4)
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,4,2,3] => ([(1,3),(2,3)],4)
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> ? = 2
[2,1,3,4] => ([(2,3)],4)
=> [1,3] => ([(2,3)],4)
=> 1
[2,1,4,3] => ([(0,3),(1,2)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> ? = 2
[2,3,1,4] => ([(1,3),(2,3)],4)
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,1,2,4] => ([(1,3),(2,3)],4)
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> ? = 2
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 4
[1,2,3,4,5] => ([],5)
=> [5] => ([],5)
=> 0
[1,2,3,5,4] => ([(3,4)],5)
=> [1,4] => ([(3,4)],5)
=> 1
[1,2,4,3,5] => ([(3,4)],5)
=> [1,4] => ([(3,4)],5)
=> 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> [2,3] => ([(2,4),(3,4)],5)
=> ? = 2
[1,3,2,4,5] => ([(3,4)],5)
=> [1,4] => ([(3,4)],5)
=> 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> [2,3] => ([(2,4),(3,4)],5)
=> ? = 2
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> [2,3] => ([(2,4),(3,4)],5)
=> ? = 2
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 4
Description
The largest eigenvalue of a graph if it is integral. If a graph is d-regular, then its largest eigenvalue equals d. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001821
Mp00240: Permutations weak exceedance partitionSet partitions
Mp00080: Set partitions to permutationPermutations
Mp00170: Permutations to signed permutationSigned permutations
St001821: Signed permutations ⟶ ℤResult quality: 58% values known / values provided: 58%distinct values known / distinct values provided: 100%
Values
[1] => {{1}}
=> [1] => [1] => 0
[1,2] => {{1},{2}}
=> [1,2] => [1,2] => 0
[2,1] => {{1,2}}
=> [2,1] => [2,1] => 1
[1,2,3] => {{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 0
[1,3,2] => {{1},{2,3}}
=> [1,3,2] => [1,3,2] => 1
[2,1,3] => {{1,2},{3}}
=> [2,1,3] => [2,1,3] => 1
[2,3,1] => {{1,2,3}}
=> [2,3,1] => [2,3,1] => 2
[3,1,2] => {{1,3},{2}}
=> [3,2,1] => [3,2,1] => 2
[3,2,1] => {{1,3},{2}}
=> [3,2,1] => [3,2,1] => 2
[1,2,3,4] => {{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => {{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => 1
[1,3,2,4] => {{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => 1
[1,3,4,2] => {{1},{2,3,4}}
=> [1,3,4,2] => [1,3,4,2] => 2
[1,4,2,3] => {{1},{2,4},{3}}
=> [1,4,3,2] => [1,4,3,2] => 2
[1,4,3,2] => {{1},{2,4},{3}}
=> [1,4,3,2] => [1,4,3,2] => 2
[2,1,3,4] => {{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => 1
[2,1,4,3] => {{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => 2
[2,3,1,4] => {{1,2,3},{4}}
=> [2,3,1,4] => [2,3,1,4] => 2
[2,3,4,1] => {{1,2,3,4}}
=> [2,3,4,1] => [2,3,4,1] => 3
[2,4,1,3] => {{1,2,4},{3}}
=> [2,4,3,1] => [2,4,3,1] => 3
[2,4,3,1] => {{1,2,4},{3}}
=> [2,4,3,1] => [2,4,3,1] => 3
[3,1,2,4] => {{1,3},{2},{4}}
=> [3,2,1,4] => [3,2,1,4] => 2
[3,1,4,2] => {{1,3,4},{2}}
=> [3,2,4,1] => [3,2,4,1] => 3
[3,2,1,4] => {{1,3},{2},{4}}
=> [3,2,1,4] => [3,2,1,4] => 2
[3,2,4,1] => {{1,3,4},{2}}
=> [3,2,4,1] => [3,2,4,1] => 3
[3,4,1,2] => {{1,3},{2,4}}
=> [3,4,1,2] => [3,4,1,2] => 4
[3,4,2,1] => {{1,3},{2,4}}
=> [3,4,1,2] => [3,4,1,2] => 4
[4,1,2,3] => {{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => 3
[4,1,3,2] => {{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => 3
[4,2,1,3] => {{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => 3
[4,2,3,1] => {{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => 3
[4,3,1,2] => {{1,4},{2,3}}
=> [4,3,2,1] => [4,3,2,1] => 4
[4,3,2,1] => {{1,4},{2,3}}
=> [4,3,2,1] => [4,3,2,1] => 4
[1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
[1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => [1,2,3,5,4] => ? = 1
[1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => [1,2,4,3,5] => ? = 1
[1,2,4,5,3] => {{1},{2},{3,4,5}}
=> [1,2,4,5,3] => [1,2,4,5,3] => ? = 2
[1,2,5,3,4] => {{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [1,2,5,4,3] => ? = 2
[1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [1,2,5,4,3] => ? = 2
[1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [1,3,2,4,5] => ? = 1
[1,3,2,5,4] => {{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [1,3,2,5,4] => ? = 2
[1,3,4,2,5] => {{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [1,3,4,2,5] => ? = 2
[1,3,4,5,2] => {{1},{2,3,4,5}}
=> [1,3,4,5,2] => [1,3,4,5,2] => ? = 3
[1,3,5,2,4] => {{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [1,3,5,4,2] => ? = 3
[1,3,5,4,2] => {{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [1,3,5,4,2] => ? = 3
[1,4,2,3,5] => {{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [1,4,3,2,5] => ? = 2
[1,4,2,5,3] => {{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [1,4,3,5,2] => ? = 3
[1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [1,4,3,2,5] => ? = 2
[1,4,3,5,2] => {{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [1,4,3,5,2] => ? = 3
[1,4,5,2,3] => {{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [1,4,5,2,3] => ? = 4
[1,4,5,3,2] => {{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [1,4,5,2,3] => ? = 4
[1,5,2,3,4] => {{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [1,5,3,4,2] => ? = 3
[1,5,2,4,3] => {{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [1,5,3,4,2] => ? = 3
[1,5,3,2,4] => {{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [1,5,3,4,2] => ? = 3
[1,5,3,4,2] => {{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [1,5,3,4,2] => ? = 3
[1,5,4,2,3] => {{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [1,5,4,3,2] => ? = 4
[1,5,4,3,2] => {{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [1,5,4,3,2] => ? = 4
Description
The sorting index of a signed permutation. A signed permutation σ=[σ(1),,σ(n)] can be sorted [1,,n] by signed transpositions in the following way: First move ±n to its position and swap the sign if needed, then ±(n1),±(n2) and so on. For example for [2,4,5,1,3] we have the swaps [2,4,5,1,3][2,4,3,1,5][2,1,3,4,5][2,1,3,4,5][1,2,3,4,5] given by the signed transpositions (3,5),(2,4),(3,3),(1,2). If (i1,j1),,(in,jn) is the decomposition of σ obtained this way (including trivial transpositions) then the sorting index of σ is defined as sorB(σ)=n1k=1jkikχ(ik<0), where χ(ik<0) is 1 if ik is negative and 0 otherwise. For σ=[2,4,5,1,3] we have sorB(σ)=(53)+(4(2)1)+(3(3)1)+(21)=13.
Matching statistic: St001596
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00233: Dyck paths skew partitionSkew partitions
St001596: Skew partitions ⟶ ℤResult quality: 42% values known / values provided: 42%distinct values known / distinct values provided: 60%
Values
[1] => [1,0]
=> [1,1,0,0]
=> [[2],[]]
=> 0
[1,2] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> [[3],[]]
=> 0
[2,1] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> 1
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> 0
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> 1
[2,3,1] => [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> 2
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> 2
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> 2
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> 2
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> 2
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> 2
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> ? = 3
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> ? = 3
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> ? = 3
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[4,3],[]]
=> 2
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> ? = 3
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[4,3],[]]
=> 2
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> ? = 3
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> ? = 4
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> ? = 4
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ? = 3
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ? = 3
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ? = 3
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ? = 3
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ? = 4
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ? = 4
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [[6],[]]
=> 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [[5,5],[3]]
=> 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [[5,4],[2]]
=> 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [[4,4,4],[2,2]]
=> ? = 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [[5,5],[2]]
=> ? = 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [[5,5],[2]]
=> ? = 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [[5,3],[1]]
=> 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [[4,4,3],[2,1]]
=> ? = 2
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [[4,3,3],[1,1]]
=> ? = 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [[3,3,3,3],[1,1,1]]
=> ? = 3
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [[4,4,3],[1,1]]
=> ? = 3
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [[4,4,3],[1,1]]
=> ? = 3
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [[5,4],[1]]
=> ? = 2
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [[4,4,4],[2,1]]
=> ? = 3
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [[5,4],[1]]
=> ? = 2
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [[4,4,4],[2,1]]
=> ? = 3
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [[5,5],[1]]
=> ? = 4
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [[5,5],[1]]
=> ? = 4
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[4,4,4],[1,1]]
=> ? = 3
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[4,4,4],[1,1]]
=> ? = 3
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[4,4,4],[1,1]]
=> ? = 3
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[4,4,4],[1,1]]
=> ? = 3
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[4,4,4],[1,1]]
=> ? = 4
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[4,4,4],[1,1]]
=> ? = 4
Description
The number of two-by-two squares inside a skew partition. This is, the number of cells (i,j) in a skew partition for which the box (i+1,j+1) is also a cell inside the skew partition.
Matching statistic: St001633
Mp00065: Permutations permutation posetPosets
Mp00195: Posets order idealsLattices
Mp00193: Lattices to posetPosets
St001633: Posets ⟶ ℤResult quality: 37% values known / values provided: 37%distinct values known / distinct values provided: 60%
Values
[1] => ([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[2,3,1] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[3,1,2] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 2
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 2
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 2
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ? = 2
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 3
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 3
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 3
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? = 2
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 3
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 4
[3,4,2,1] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? = 4
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 3
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 3
[4,2,3,1] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? = 3
[4,3,1,2] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? = 4
[4,3,2,1] => ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 4
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> 1
[1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1
[1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 2
[1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 2
[1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,5),(5,1),(5,2),(5,3),(6,9),(7,9),(8,9)],10)
=> ([(0,4),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,5),(5,1),(5,2),(5,3),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 1
[1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ? = 2
[1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 2
[1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 3
[1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 3
[1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ? = 3
[1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 2
[1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 3
[1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ? = 2
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11)
=> ([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11)
=> ? = 3
[1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 4
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ? = 4
[1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 3
[1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ? = 3
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11)
=> ([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11)
=> ? = 3
[1,5,3,4,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ? = 3
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ? = 4
[1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1),(1,2),(1,3),(1,4),(1,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16)],17)
=> ([(0,1),(1,2),(1,3),(1,4),(1,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16)],17)
=> ? = 4
Description
The number of simple modules with projective dimension two in the incidence algebra of the poset.
Mp00065: Permutations permutation posetPosets
Mp00195: Posets order idealsLattices
St001877: Lattices ⟶ ℤResult quality: 35% values known / values provided: 35%distinct values known / distinct values provided: 60%
Values
[1] => ([],1)
=> ([(0,1)],2)
=> ? = 0
[1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0
[2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[2,3,1] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[3,1,2] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 2
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 2
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 2
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ? = 2
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 3
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 3
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 3
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? = 2
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 3
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 4
[3,4,2,1] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? = 4
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 3
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 3
[4,2,3,1] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? = 3
[4,3,1,2] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? = 4
[4,3,2,1] => ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 4
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> 1
[1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1
[1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 2
[1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 2
[1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,5),(5,1),(5,2),(5,3),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 1
[1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ? = 2
[1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 2
[1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 3
[1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 3
[1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ? = 3
[1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 2
[1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 3
[1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ? = 2
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11)
=> ? = 3
[1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 4
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ? = 4
[1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 3
[1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ? = 3
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11)
=> ? = 3
[1,5,3,4,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ? = 3
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ? = 4
[1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1),(1,2),(1,3),(1,4),(1,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16)],17)
=> ? = 4
Description
Number of indecomposable injective modules with projective dimension 2.
The following 21 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000264The girth of a graph, which is not a tree. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000091The descent variation of a composition. St000173The segment statistic of a semistandard tableau. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length 3. St001926Sparre Andersen's position of the maximum of a signed permutation. St001330The hat guessing number of a graph. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000302The determinant of the distance matrix of a connected graph. St000467The hyper-Wiener index of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.