Processing math: 100%

Your data matches 5 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001924: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 1
[1,1]
=> 1
[3]
=> 1
[2,1]
=> 3
[1,1,1]
=> 1
[4]
=> 1
[3,1]
=> 2
[2,2]
=> 2
[2,1,1]
=> 2
[1,1,1,1]
=> 1
[5]
=> 1
[4,1]
=> 2
[3,2]
=> 3
[3,1,1]
=> 3
[2,2,1]
=> 3
[2,1,1,1]
=> 2
[1,1,1,1,1]
=> 1
[6]
=> 1
[5,1]
=> 2
[4,2]
=> 2
[4,1,1]
=> 2
[3,3]
=> 2
[3,2,1]
=> 6
[3,1,1,1]
=> 2
[2,2,2]
=> 2
[2,2,1,1]
=> 2
[2,1,1,1,1]
=> 2
[1,1,1,1,1,1]
=> 1
[7]
=> 1
[6,1]
=> 2
[5,2]
=> 2
[5,1,1]
=> 2
[4,3]
=> 3
[4,2,1]
=> 4
[4,1,1,1]
=> 3
[3,3,1]
=> 4
[3,2,2]
=> 4
[3,2,1,1]
=> 4
[3,1,1,1,1]
=> 2
[2,2,2,1]
=> 3
[2,2,1,1,1]
=> 2
[2,1,1,1,1,1]
=> 2
[1,1,1,1,1,1,1]
=> 1
[8]
=> 1
[7,1]
=> 2
[6,2]
=> 2
[6,1,1]
=> 2
[5,3]
=> 2
[5,2,1]
=> 4
Description
The number of cells in an integer partition whose arm and leg length coincide.
Matching statistic: St000012
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
Mp00099: Dyck paths bounce pathDyck paths
St000012: Dyck paths ⟶ ℤResult quality: 52% values known / values provided: 52%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 6
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 2
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 4
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 4
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 4
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[10,1]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[9,2]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[9,1,1]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[8,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 4
[8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[4,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? = 2
[3,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 4
[3,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? = 1
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 1
[11,1]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[10,2]
=> [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[10,1,1]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[9,3]
=> [1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[9,2,1]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 4
[9,1,1,1]
=> [1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[8,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[8,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 3
[8,2,2]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 3
[8,2,1,1]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 3
[8,1,1,1,1]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
[5,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
[4,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? = 3
[4,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? = 2
[3,3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 3
[3,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 3
[3,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 4
[3,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? = 2
[2,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ?
=> ? = 2
Description
The area of a Dyck path. This is the number of complete squares in the integer lattice which are below the path and above the x-axis. The 'half-squares' directly above the axis do not contribute to this statistic. 1. Dyck paths are bijection with '''area sequences''' (a1,,an) such that a1=0,ak+1ak+1. 2. The generating function Dn(q)=DDnqarea(D) satisfy the recurrence Dn+1(q)=qkDk(q)Dnk(q). 3. The area is equidistributed with [[St000005]] and [[St000006]]. Pairs of these statistics play an important role in the theory of q,t-Catalan numbers.
Matching statistic: St000683
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
Mp00099: Dyck paths bounce pathDyck paths
St000683: Dyck paths ⟶ ℤResult quality: 52% values known / values provided: 52%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 6
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 2
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 4
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 4
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 4
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[10,1]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[9,2]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[9,1,1]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[8,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 4
[8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[4,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? = 2
[3,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 4
[3,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? = 1
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 1
[11,1]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[10,2]
=> [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[10,1,1]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[9,3]
=> [1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[9,2,1]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 4
[9,1,1,1]
=> [1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[8,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[8,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 3
[8,2,2]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 3
[8,2,1,1]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 3
[8,1,1,1,1]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
[5,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
[4,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? = 3
[4,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? = 2
[3,3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 3
[3,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 3
[3,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 4
[3,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? = 2
[2,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ?
=> ? = 2
Description
The number of points below the Dyck path such that the diagonal to the north-east hits the path between two down steps, and the diagonal to the north-west hits the path between two up steps.
Matching statistic: St000984
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
Mp00099: Dyck paths bounce pathDyck paths
St000984: Dyck paths ⟶ ℤResult quality: 52% values known / values provided: 52%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 6
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 2
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 4
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 4
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 4
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[10,1]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[9,2]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[9,1,1]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[8,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 4
[8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[4,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? = 2
[3,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 4
[3,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? = 1
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 1
[11,1]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[10,2]
=> [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[10,1,1]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[9,3]
=> [1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[9,2,1]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 4
[9,1,1,1]
=> [1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[8,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[8,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 3
[8,2,2]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 3
[8,2,1,1]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 3
[8,1,1,1,1]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
[5,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
[4,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? = 3
[4,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? = 2
[3,3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 3
[3,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 3
[3,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 4
[3,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? = 2
[2,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ?
=> ? = 2
Description
The number of boxes below precisely one peak. Imagine that each peak of the Dyck path, drawn with north and east steps, casts a shadow onto the triangular region between it and the diagonal. This statistic is the number of cells which are in the shade of precisely one peak.
Matching statistic: St001295
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
Mp00099: Dyck paths bounce pathDyck paths
St001295: Dyck paths ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 73%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 6
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 4
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 4
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 4
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 4
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 4
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 4
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 4
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 4
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 2
[6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 4
[6,1,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 2
[4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 2
[3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 4
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 2
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 4
[7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
[6,4]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2
[6,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 3
[6,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 3
[6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 3
[6,1,1,1,1]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2
[5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2
[5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2
[4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 3
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
[3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 3
[3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 3
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 4
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2
[2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2
Description
Gives the vector space dimension of the homomorphism space between J^2 and J^2.