Identifier
Values
0 => 1 => [1,1] => 1
1 => 0 => [2] => 0
00 => 11 => [1,1,1] => 3
01 => 10 => [1,2] => 1
10 => 01 => [2,1] => 2
11 => 00 => [3] => 0
000 => 111 => [1,1,1,1] => 6
001 => 110 => [1,1,2] => 3
010 => 101 => [1,2,1] => 4
011 => 100 => [1,3] => 1
100 => 011 => [2,1,1] => 5
101 => 010 => [2,2] => 2
110 => 001 => [3,1] => 3
111 => 000 => [4] => 0
0000 => 1111 => [1,1,1,1,1] => 10
0001 => 1110 => [1,1,1,2] => 6
0010 => 1101 => [1,1,2,1] => 7
0011 => 1100 => [1,1,3] => 3
0100 => 1011 => [1,2,1,1] => 8
0101 => 1010 => [1,2,2] => 4
0110 => 1001 => [1,3,1] => 5
0111 => 1000 => [1,4] => 1
1000 => 0111 => [2,1,1,1] => 9
1001 => 0110 => [2,1,2] => 5
1010 => 0101 => [2,2,1] => 6
1011 => 0100 => [2,3] => 2
1100 => 0011 => [3,1,1] => 7
1101 => 0010 => [3,2] => 3
1110 => 0001 => [4,1] => 4
1111 => 0000 => [5] => 0
00000 => 11111 => [1,1,1,1,1,1] => 15
00001 => 11110 => [1,1,1,1,2] => 10
00010 => 11101 => [1,1,1,2,1] => 11
00011 => 11100 => [1,1,1,3] => 6
00100 => 11011 => [1,1,2,1,1] => 12
00101 => 11010 => [1,1,2,2] => 7
00110 => 11001 => [1,1,3,1] => 8
00111 => 11000 => [1,1,4] => 3
01000 => 10111 => [1,2,1,1,1] => 13
01001 => 10110 => [1,2,1,2] => 8
01010 => 10101 => [1,2,2,1] => 9
01011 => 10100 => [1,2,3] => 4
01100 => 10011 => [1,3,1,1] => 10
01101 => 10010 => [1,3,2] => 5
01110 => 10001 => [1,4,1] => 6
01111 => 10000 => [1,5] => 1
10000 => 01111 => [2,1,1,1,1] => 14
10001 => 01110 => [2,1,1,2] => 9
10010 => 01101 => [2,1,2,1] => 10
10011 => 01100 => [2,1,3] => 5
10100 => 01011 => [2,2,1,1] => 11
10101 => 01010 => [2,2,2] => 6
10110 => 01001 => [2,3,1] => 7
10111 => 01000 => [2,4] => 2
11000 => 00111 => [3,1,1,1] => 12
11001 => 00110 => [3,1,2] => 7
11010 => 00101 => [3,2,1] => 8
11011 => 00100 => [3,3] => 3
11100 => 00011 => [4,1,1] => 9
11101 => 00010 => [4,2] => 4
11110 => 00001 => [5,1] => 5
11111 => 00000 => [6] => 0
000000 => 111111 => [1,1,1,1,1,1,1] => 21
000001 => 111110 => [1,1,1,1,1,2] => 15
000010 => 111101 => [1,1,1,1,2,1] => 16
000011 => 111100 => [1,1,1,1,3] => 10
000100 => 111011 => [1,1,1,2,1,1] => 17
000101 => 111010 => [1,1,1,2,2] => 11
000110 => 111001 => [1,1,1,3,1] => 12
000111 => 111000 => [1,1,1,4] => 6
001000 => 110111 => [1,1,2,1,1,1] => 18
001001 => 110110 => [1,1,2,1,2] => 12
001010 => 110101 => [1,1,2,2,1] => 13
001011 => 110100 => [1,1,2,3] => 7
001100 => 110011 => [1,1,3,1,1] => 14
001101 => 110010 => [1,1,3,2] => 8
001110 => 110001 => [1,1,4,1] => 9
001111 => 110000 => [1,1,5] => 3
010000 => 101111 => [1,2,1,1,1,1] => 19
010001 => 101110 => [1,2,1,1,2] => 13
010010 => 101101 => [1,2,1,2,1] => 14
010011 => 101100 => [1,2,1,3] => 8
010100 => 101011 => [1,2,2,1,1] => 15
010101 => 101010 => [1,2,2,2] => 9
010110 => 101001 => [1,2,3,1] => 10
010111 => 101000 => [1,2,4] => 4
011000 => 100111 => [1,3,1,1,1] => 16
011001 => 100110 => [1,3,1,2] => 10
011010 => 100101 => [1,3,2,1] => 11
011011 => 100100 => [1,3,3] => 5
011100 => 100011 => [1,4,1,1] => 12
011101 => 100010 => [1,4,2] => 6
011110 => 100001 => [1,5,1] => 7
011111 => 100000 => [1,6] => 1
100000 => 011111 => [2,1,1,1,1,1] => 20
100001 => 011110 => [2,1,1,1,2] => 14
100010 => 011101 => [2,1,1,2,1] => 15
100011 => 011100 => [2,1,1,3] => 9
100100 => 011011 => [2,1,2,1,1] => 16
100101 => 011010 => [2,1,2,2] => 10
100110 => 011001 => [2,1,3,1] => 11
>>> Load all 395 entries. <<<
100111 => 011000 => [2,1,4] => 5
101000 => 010111 => [2,2,1,1,1] => 17
101001 => 010110 => [2,2,1,2] => 11
101010 => 010101 => [2,2,2,1] => 12
101011 => 010100 => [2,2,3] => 6
101100 => 010011 => [2,3,1,1] => 13
101101 => 010010 => [2,3,2] => 7
101110 => 010001 => [2,4,1] => 8
101111 => 010000 => [2,5] => 2
110000 => 001111 => [3,1,1,1,1] => 18
110001 => 001110 => [3,1,1,2] => 12
110010 => 001101 => [3,1,2,1] => 13
110011 => 001100 => [3,1,3] => 7
110100 => 001011 => [3,2,1,1] => 14
110101 => 001010 => [3,2,2] => 8
110110 => 001001 => [3,3,1] => 9
110111 => 001000 => [3,4] => 3
111000 => 000111 => [4,1,1,1] => 15
111001 => 000110 => [4,1,2] => 9
111010 => 000101 => [4,2,1] => 10
111011 => 000100 => [4,3] => 4
111100 => 000011 => [5,1,1] => 11
111101 => 000010 => [5,2] => 5
111110 => 000001 => [6,1] => 6
111111 => 000000 => [7] => 0
0000000 => 1111111 => [1,1,1,1,1,1,1,1] => 28
0000001 => 1111110 => [1,1,1,1,1,1,2] => 21
0000010 => 1111101 => [1,1,1,1,1,2,1] => 22
0000011 => 1111100 => [1,1,1,1,1,3] => 15
0000100 => 1111011 => [1,1,1,1,2,1,1] => 23
0000101 => 1111010 => [1,1,1,1,2,2] => 16
0000110 => 1111001 => [1,1,1,1,3,1] => 17
0000111 => 1111000 => [1,1,1,1,4] => 10
0001000 => 1110111 => [1,1,1,2,1,1,1] => 24
0001001 => 1110110 => [1,1,1,2,1,2] => 17
0001010 => 1110101 => [1,1,1,2,2,1] => 18
0001011 => 1110100 => [1,1,1,2,3] => 11
0001100 => 1110011 => [1,1,1,3,1,1] => 19
0001101 => 1110010 => [1,1,1,3,2] => 12
0001110 => 1110001 => [1,1,1,4,1] => 13
0001111 => 1110000 => [1,1,1,5] => 6
0010000 => 1101111 => [1,1,2,1,1,1,1] => 25
0010001 => 1101110 => [1,1,2,1,1,2] => 18
0010010 => 1101101 => [1,1,2,1,2,1] => 19
0010011 => 1101100 => [1,1,2,1,3] => 12
0010100 => 1101011 => [1,1,2,2,1,1] => 20
0010101 => 1101010 => [1,1,2,2,2] => 13
0010110 => 1101001 => [1,1,2,3,1] => 14
0010111 => 1101000 => [1,1,2,4] => 7
0011000 => 1100111 => [1,1,3,1,1,1] => 21
0011001 => 1100110 => [1,1,3,1,2] => 14
0011010 => 1100101 => [1,1,3,2,1] => 15
0011011 => 1100100 => [1,1,3,3] => 8
0011100 => 1100011 => [1,1,4,1,1] => 16
0011101 => 1100010 => [1,1,4,2] => 9
0011110 => 1100001 => [1,1,5,1] => 10
0011111 => 1100000 => [1,1,6] => 3
0100000 => 1011111 => [1,2,1,1,1,1,1] => 26
0100001 => 1011110 => [1,2,1,1,1,2] => 19
0100010 => 1011101 => [1,2,1,1,2,1] => 20
0100011 => 1011100 => [1,2,1,1,3] => 13
0100100 => 1011011 => [1,2,1,2,1,1] => 21
0100101 => 1011010 => [1,2,1,2,2] => 14
0100110 => 1011001 => [1,2,1,3,1] => 15
0100111 => 1011000 => [1,2,1,4] => 8
0101000 => 1010111 => [1,2,2,1,1,1] => 22
0101001 => 1010110 => [1,2,2,1,2] => 15
0101010 => 1010101 => [1,2,2,2,1] => 16
0101011 => 1010100 => [1,2,2,3] => 9
0101100 => 1010011 => [1,2,3,1,1] => 17
0101101 => 1010010 => [1,2,3,2] => 10
0101110 => 1010001 => [1,2,4,1] => 11
0101111 => 1010000 => [1,2,5] => 4
0110000 => 1001111 => [1,3,1,1,1,1] => 23
0110001 => 1001110 => [1,3,1,1,2] => 16
0110010 => 1001101 => [1,3,1,2,1] => 17
0110011 => 1001100 => [1,3,1,3] => 10
0110100 => 1001011 => [1,3,2,1,1] => 18
0110101 => 1001010 => [1,3,2,2] => 11
0110110 => 1001001 => [1,3,3,1] => 12
0110111 => 1001000 => [1,3,4] => 5
0111000 => 1000111 => [1,4,1,1,1] => 19
0111001 => 1000110 => [1,4,1,2] => 12
0111010 => 1000101 => [1,4,2,1] => 13
0111011 => 1000100 => [1,4,3] => 6
0111100 => 1000011 => [1,5,1,1] => 14
0111101 => 1000010 => [1,5,2] => 7
0111110 => 1000001 => [1,6,1] => 8
0111111 => 1000000 => [1,7] => 1
1000000 => 0111111 => [2,1,1,1,1,1,1] => 27
1000001 => 0111110 => [2,1,1,1,1,2] => 20
1000010 => 0111101 => [2,1,1,1,2,1] => 21
1000011 => 0111100 => [2,1,1,1,3] => 14
1000100 => 0111011 => [2,1,1,2,1,1] => 22
1000101 => 0111010 => [2,1,1,2,2] => 15
1000110 => 0111001 => [2,1,1,3,1] => 16
1000111 => 0111000 => [2,1,1,4] => 9
1001000 => 0110111 => [2,1,2,1,1,1] => 23
1001001 => 0110110 => [2,1,2,1,2] => 16
1001010 => 0110101 => [2,1,2,2,1] => 17
1001011 => 0110100 => [2,1,2,3] => 10
1001100 => 0110011 => [2,1,3,1,1] => 18
1001101 => 0110010 => [2,1,3,2] => 11
1001110 => 0110001 => [2,1,4,1] => 12
1001111 => 0110000 => [2,1,5] => 5
1010000 => 0101111 => [2,2,1,1,1,1] => 24
1010001 => 0101110 => [2,2,1,1,2] => 17
1010010 => 0101101 => [2,2,1,2,1] => 18
1010011 => 0101100 => [2,2,1,3] => 11
1010100 => 0101011 => [2,2,2,1,1] => 19
1010101 => 0101010 => [2,2,2,2] => 12
1010110 => 0101001 => [2,2,3,1] => 13
1010111 => 0101000 => [2,2,4] => 6
1011000 => 0100111 => [2,3,1,1,1] => 20
1011001 => 0100110 => [2,3,1,2] => 13
1011010 => 0100101 => [2,3,2,1] => 14
1011011 => 0100100 => [2,3,3] => 7
1011100 => 0100011 => [2,4,1,1] => 15
1011101 => 0100010 => [2,4,2] => 8
1011110 => 0100001 => [2,5,1] => 9
1011111 => 0100000 => [2,6] => 2
1100000 => 0011111 => [3,1,1,1,1,1] => 25
1100001 => 0011110 => [3,1,1,1,2] => 18
1100010 => 0011101 => [3,1,1,2,1] => 19
1100011 => 0011100 => [3,1,1,3] => 12
1100100 => 0011011 => [3,1,2,1,1] => 20
1100101 => 0011010 => [3,1,2,2] => 13
1100110 => 0011001 => [3,1,3,1] => 14
1100111 => 0011000 => [3,1,4] => 7
1101000 => 0010111 => [3,2,1,1,1] => 21
1101001 => 0010110 => [3,2,1,2] => 14
1101010 => 0010101 => [3,2,2,1] => 15
1101011 => 0010100 => [3,2,3] => 8
1101100 => 0010011 => [3,3,1,1] => 16
1101101 => 0010010 => [3,3,2] => 9
1101110 => 0010001 => [3,4,1] => 10
1101111 => 0010000 => [3,5] => 3
1110000 => 0001111 => [4,1,1,1,1] => 22
1110001 => 0001110 => [4,1,1,2] => 15
1110010 => 0001101 => [4,1,2,1] => 16
1110011 => 0001100 => [4,1,3] => 9
1110100 => 0001011 => [4,2,1,1] => 17
1110101 => 0001010 => [4,2,2] => 10
1110110 => 0001001 => [4,3,1] => 11
1110111 => 0001000 => [4,4] => 4
1111000 => 0000111 => [5,1,1,1] => 18
1111001 => 0000110 => [5,1,2] => 11
1111010 => 0000101 => [5,2,1] => 12
1111011 => 0000100 => [5,3] => 5
1111100 => 0000011 => [6,1,1] => 13
1111101 => 0000010 => [6,2] => 6
1111110 => 0000001 => [7,1] => 7
1111111 => 0000000 => [8] => 0
00001110 => 11110001 => [1,1,1,1,4,1] => 18
00010110 => 11101001 => [1,1,1,2,3,1] => 19
00100110 => 11011001 => [1,1,2,1,3,1] => 20
00111110 => 11000001 => [1,1,6,1] => 11
01000110 => 10111001 => [1,2,1,1,3,1] => 21
01001010 => 10110101 => [1,2,1,2,2,1] => 22
01010010 => 10101101 => [1,2,2,1,2,1] => 23
01011110 => 10100001 => [1,2,5,1] => 12
01100010 => 10011101 => [1,3,1,1,2,1] => 24
01100100 => 10011011 => [1,3,1,2,1,1] => 25
01101000 => 10010111 => [1,3,2,1,1,1] => 26
01101110 => 10010001 => [1,3,4,1] => 13
01110000 => 10001111 => [1,4,1,1,1,1] => 27
01110011 => 10001100 => [1,4,1,3] => 12
01110101 => 10001010 => [1,4,2,2] => 13
01110110 => 10001001 => [1,4,3,1] => 14
01111001 => 10000110 => [1,5,1,2] => 14
01111010 => 10000101 => [1,5,2,1] => 15
01111100 => 10000011 => [1,6,1,1] => 16
01111101 => 10000010 => [1,6,2] => 8
01111110 => 10000001 => [1,7,1] => 9
01111111 => 10000000 => [1,8] => 1
10011110 => 01100001 => [2,1,5,1] => 13
10101110 => 01010001 => [2,2,4,1] => 14
11001110 => 00110001 => [3,1,4,1] => 15
11111010 => 00000101 => [6,2,1] => 14
11111100 => 00000011 => [7,1,1] => 15
11111110 => 00000001 => [8,1] => 8
000000000 => 111111111 => [1,1,1,1,1,1,1,1,1,1] => 45
000000101 => 111111010 => [1,1,1,1,1,1,2,2] => 29
000010001 => 111101110 => [1,1,1,1,2,1,1,2] => 31
000010100 => 111101011 => [1,1,1,1,2,2,1,1] => 33
000011011 => 111100100 => [1,1,1,1,3,3] => 17
000011110 => 111100001 => [1,1,1,1,5,1] => 19
001000001 => 110111110 => [1,1,2,1,1,1,1,2] => 33
001000100 => 110111011 => [1,1,2,1,1,2,1,1] => 35
001001011 => 110110100 => [1,1,2,1,2,3] => 19
001010000 => 110101111 => [1,1,2,2,1,1,1,1] => 37
001010101 => 110101010 => [1,1,2,2,2,2] => 21
001100011 => 110011100 => [1,1,3,1,1,3] => 21
001101001 => 110010110 => [1,1,3,2,1,2] => 23
001101100 => 110010011 => [1,1,3,3,1,1] => 25
001110111 => 110001000 => [1,1,4,4] => 9
001111110 => 110000001 => [1,1,7,1] => 12
010001110 => 101110001 => [1,2,1,1,4,1] => 22
010111110 => 101000001 => [1,2,6,1] => 13
011000110 => 100111001 => [1,3,1,1,3,1] => 25
011011110 => 100100001 => [1,3,5,1] => 14
011100010 => 100011101 => [1,4,1,1,2,1] => 28
011101110 => 100010001 => [1,4,4,1] => 15
011110000 => 100001111 => [1,5,1,1,1,1] => 31
011110110 => 100001001 => [1,5,3,1] => 16
011111001 => 100000110 => [1,6,1,2] => 16
011111010 => 100000101 => [1,6,2,1] => 17
011111100 => 100000011 => [1,7,1,1] => 18
011111110 => 100000001 => [1,8,1] => 10
011111111 => 100000000 => [1,9] => 1
100000001 => 011111110 => [2,1,1,1,1,1,1,2] => 35
100000100 => 011111011 => [2,1,1,1,1,2,1,1] => 37
100001011 => 011110100 => [2,1,1,1,2,3] => 21
100010000 => 011101111 => [2,1,1,2,1,1,1,1] => 39
100010101 => 011101010 => [2,1,1,2,2,2] => 23
100100011 => 011011100 => [2,1,2,1,1,3] => 23
100101001 => 011010110 => [2,1,2,2,1,2] => 25
100101100 => 011010011 => [2,1,2,3,1,1] => 27
100110111 => 011001000 => [2,1,3,4] => 11
100111110 => 011000001 => [2,1,6,1] => 14
101000000 => 010111111 => [2,2,1,1,1,1,1,1] => 41
101000101 => 010111010 => [2,2,1,1,2,2] => 25
101010001 => 010101110 => [2,2,2,1,1,2] => 27
101010100 => 010101011 => [2,2,2,2,1,1] => 29
101011011 => 010100100 => [2,2,3,3] => 13
110000011 => 001111100 => [3,1,1,1,1,3] => 25
110001001 => 001110110 => [3,1,1,2,1,2] => 27
110001100 => 001110011 => [3,1,1,3,1,1] => 29
110010111 => 001101000 => [3,1,2,4] => 13
110100001 => 001011110 => [3,2,1,1,1,2] => 29
110100100 => 001011011 => [3,2,1,2,1,1] => 31
110101011 => 001010100 => [3,2,2,3] => 15
110110000 => 001001111 => [3,3,1,1,1,1] => 33
110110101 => 001001010 => [3,3,2,2] => 17
111000111 => 000111000 => [4,1,1,4] => 15
111010011 => 000101100 => [4,2,1,3] => 17
111011001 => 000100110 => [4,3,1,2] => 19
111011100 => 000100011 => [4,4,1,1] => 21
111101111 => 000010000 => [5,5] => 5
111111100 => 000000011 => [8,1,1] => 17
111111110 => 000000001 => [9,1] => 9
1111111110 => 0000000001 => [10,1] => 10
10000000100 => 01111111011 => [2,1,1,1,1,1,1,2,1,1] => 56
10000010000 => 01111101111 => [2,1,1,1,1,2,1,1,1,1] => 58
10001000000 => 01110111111 => [2,1,1,2,1,1,1,1,1,1] => 60
10001010100 => 01110101011 => [2,1,1,2,2,2,1,1] => 44
10100000000 => 01011111111 => [2,2,1,1,1,1,1,1,1,1] => 62
=> => [1] => 0
0111111111 => 1000000000 => [1,10] => 1
11010101100 => 00101010011 => [3,2,2,3,1,1] => 36
11011010100 => 00100101011 => [3,3,2,2,1,1] => 38
00101011011 => 11010100100 => [1,1,2,2,3,3] => 22
00110101011 => 11001010100 => [1,1,3,2,2,3] => 24
0011111110 => 1100000001 => [1,1,8,1] => 13
00000000000 => 11111111111 => [1,1,1,1,1,1,1,1,1,1,1,1] => 66
0101111110 => 1010000001 => [1,2,7,1] => 14
10101010101 => 01010101010 => [2,2,2,2,2,2] => 30
10101000100 => 01010111011 => [2,2,2,1,1,2,1,1] => 48
10100010100 => 01011101011 => [2,2,1,1,2,2,1,1] => 46
10010100100 => 01101011011 => [2,1,2,2,1,2,1,1] => 46
00100010101 => 11011101010 => [1,1,2,1,1,2,2,2] => 36
00101000101 => 11010111010 => [1,1,2,2,1,1,2,2] => 38
00101010001 => 11010101110 => [1,1,2,2,2,1,1,2] => 40
00101010100 => 11010101011 => [1,1,2,2,2,2,1,1] => 42
00100010000 => 11011101111 => [1,1,2,1,1,2,1,1,1,1] => 56
00001000001 => 11110111110 => [1,1,1,1,2,1,1,1,1,2] => 50
00001000100 => 11110111011 => [1,1,1,1,2,1,1,2,1,1] => 52
00000000101 => 11111111010 => [1,1,1,1,1,1,1,1,2,2] => 46
00100000001 => 11011111110 => [1,1,2,1,1,1,1,1,1,2] => 52
10000000001 => 01111111110 => [2,1,1,1,1,1,1,1,1,2] => 54
10101110111 => 01010001000 => [2,2,4,4] => 14
11011011011 => 00100100100 => [3,3,3,3] => 18
11010110111 => 00101001000 => [3,2,3,4] => 16
11101110101 => 00010001010 => [4,4,2,2] => 22
11101101011 => 00010010100 => [4,3,2,3] => 20
11101010111 => 00010101000 => [4,2,2,4] => 18
11111011111 => 00000100000 => [6,6] => 6
0111111100 => 1000000011 => [1,8,1,1] => 20
0111111010 => 1000000101 => [1,7,2,1] => 19
11000000011 => 00111111100 => [3,1,1,1,1,1,1,3] => 42
10101010000 => 01010101111 => [2,2,2,2,1,1,1,1] => 50
10101001011 => 01010110100 => [2,2,2,1,2,3] => 28
00111000111 => 11000111000 => [1,1,4,1,1,4] => 24
10010110101 => 01101001010 => [2,1,2,3,2,2] => 28
11000001001 => 00111110110 => [3,1,1,1,1,2,1,2] => 44
11000100001 => 00111011110 => [3,1,1,2,1,1,1,2] => 46
11010000001 => 00101111110 => [3,2,1,1,1,1,1,2] => 48
10010101011 => 01101010100 => [2,1,2,2,2,3] => 26
00001110111 => 11110001000 => [1,1,1,1,4,4] => 18
11101110000 => 00010001111 => [4,4,1,1,1,1] => 42
11100011100 => 00011100011 => [4,1,1,4,1,1] => 36
00100001011 => 11011110100 => [1,1,2,1,1,1,2,3] => 34
00000010001 => 11111101110 => [1,1,1,1,1,1,2,1,1,2] => 48
11100000111 => 00011111000 => [4,1,1,1,1,4] => 30
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The major index of the composition.
The descents of a composition $[c_1,c_2,\dots,c_k]$ are the partial sums $c_1, c_1+c_2,\dots, c_1+\dots+c_{k-1}$, excluding the sum of all parts. The major index of a composition is the sum of its descents.
For details about the major index see Permutations/Descents-Major.
Map
complement
Description
Send a binary word to the word obtained by interchanging the two letters.
Map
to composition
Description
The composition corresponding to a binary word.
Prepending $1$ to a binary word $w$, the $i$-th part of the composition equals $1$ plus the number of zeros after the $i$-th $1$ in $w$.
This map is not surjective, since the empty composition does not have a preimage.