Identifier
-
Mp00231:
Integer compositions
—bounce path⟶
Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00124: Dyck paths —Adin-Bagno-Roichman transformation⟶ Dyck paths
St000013: Dyck paths ⟶ ℤ (values match St000442The maximal area to the right of an up step of a Dyck path.)
Values
[1] => [1,0] => [1,1,0,0] => [1,1,0,0] => 2
[1,1] => [1,0,1,0] => [1,1,0,1,0,0] => [1,0,1,1,0,0] => 2
[2] => [1,1,0,0] => [1,1,1,0,0,0] => [1,1,1,0,0,0] => 3
[1,1,1] => [1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0] => 2
[1,2] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0] => 3
[2,1] => [1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0] => 2
[3] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => 4
[1,1,1,1] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => 2
[1,1,2] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => 3
[1,2,1] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => 2
[1,3] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 4
[2,1,1] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => 2
[2,2] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 3
[3,1] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 3
[4] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 5
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => 2
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => 3
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => 2
[1,1,3] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 4
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => 2
[1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 3
[1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 3
[1,4] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 5
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => 2
[2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => 3
[2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 2
[2,3] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 4
[3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => 3
[3,2] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
[4,1] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 4
[5] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 6
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => 2
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => 3
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => 2
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => 4
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => 2
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,1,1,0,0,0] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0] => 3
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0] => 3
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => 5
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0] => 2
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0] => 3
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => 2
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => 4
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0] => 3
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0] => 3
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => 4
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0] => 2
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,1,1,0,0,0] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0] => 3
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,1,1,0,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => 2
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => 4
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0] => 2
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0] => 3
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => 3
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,0,0,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => 5
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0] => 3
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,1,0,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0] => 3
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0] => 3
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => 4
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => 4
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => 4
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[6] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => 7
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0] => 2
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0] => 3
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0] => 2
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0] => 4
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0] => 2
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0] => 3
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0] => 5
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0] => 2
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0] => 2
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0] => 4
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0] => 3
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,0] => 4
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0] => 2
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,1,0,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0] => 4
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0] => 3
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0] => 3
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,0,0,1,1,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0] => 5
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0] => 3
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0,1,1,0,0] => 3
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,1,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0,1,1,1,1,0,0,0,0] => 4
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0,1,1,0,0] => 4
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0] => 7
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0] => 2
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,1,0,1,1,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0] => 3
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,1,0,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0] => 4
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,0,1,1,0,0,1,1,1,0,0,0] => 3
[2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,1,1,0,0,0,1,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0,1,1,0,0] => 3
[2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,0,0,1,0,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0] => 5
[2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,1,0,1,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,1,1,0,0,0] => 3
[2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0] => 2
[2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,0,0,1,1,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0] => 4
[2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0,1,1,0,0] => 3
[2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,0,1,1,1,1,0,0,0,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0] => 4
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0] => 3
[3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,1,0,1,0,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0] => 3
>>> Load all 159 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The height of a Dyck path.
The height of a Dyck path $D$ of semilength $n$ is defined as the maximal height of a peak of $D$. The height of $D$ at position $i$ is the number of up-steps minus the number of down-steps before position $i$.
The height of a Dyck path $D$ of semilength $n$ is defined as the maximal height of a peak of $D$. The height of $D$ at position $i$ is the number of up-steps minus the number of down-steps before position $i$.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
Adin-Bagno-Roichman transformation
Description
The Adin-Bagno-Roichman transformation of a Dyck path.
This is a bijection preserving the number of up steps before each peak and sending the number of returns to the number of up steps after the last double up step.
This is a bijection preserving the number of up steps before each peak and sending the number of returns to the number of up steps after the last double up step.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!