Identifier
-
Mp00097:
Binary words
—delta morphism⟶
Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St000026: Dyck paths ⟶ ℤ
Values
0 => [1] => [1,0] => [1,0] => 1
1 => [1] => [1,0] => [1,0] => 1
00 => [2] => [1,1,0,0] => [1,0,1,0] => 1
01 => [1,1] => [1,0,1,0] => [1,1,0,0] => 2
10 => [1,1] => [1,0,1,0] => [1,1,0,0] => 2
11 => [2] => [1,1,0,0] => [1,0,1,0] => 1
000 => [3] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => 1
001 => [2,1] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 2
010 => [1,1,1] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 3
011 => [1,2] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => 3
100 => [1,2] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => 3
101 => [1,1,1] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 3
110 => [2,1] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 2
111 => [3] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => 1
0000 => [4] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => 1
0001 => [3,1] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => 2
0010 => [2,1,1] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => 3
0011 => [2,2] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => 3
0100 => [1,1,2] => [1,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0] => 4
0101 => [1,1,1,1] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 4
0110 => [1,2,1] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 4
0111 => [1,3] => [1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => 4
1000 => [1,3] => [1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => 4
1001 => [1,2,1] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 4
1010 => [1,1,1,1] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 4
1011 => [1,1,2] => [1,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0] => 4
1100 => [2,2] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => 3
1101 => [2,1,1] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => 3
1110 => [3,1] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => 2
1111 => [4] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => 1
00000 => [5] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 1
00001 => [4,1] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => 2
00010 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => 3
00011 => [3,2] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 3
00100 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => 4
00101 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => 4
00110 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => 4
00111 => [2,3] => [1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => 4
01000 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => 5
01001 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => 5
01010 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 5
01011 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => 5
01100 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => 5
01101 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => 5
01110 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => 5
01111 => [1,4] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 5
10000 => [1,4] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 5
10001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => 5
10010 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => 5
10011 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => 5
10100 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => 5
10101 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 5
10110 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => 5
10111 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => 5
11000 => [2,3] => [1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => 4
11001 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => 4
11010 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => 4
11011 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => 4
11100 => [3,2] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 3
11101 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => 3
11110 => [4,1] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => 2
11111 => [5] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 1
000000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 1
000001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => 2
000010 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 3
000011 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => 3
000100 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => 4
000101 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 4
000110 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => 4
000111 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => 4
001000 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => 5
001001 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0,1,0] => 5
001010 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 5
001011 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => 5
001100 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => 5
001101 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => 5
001110 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => 5
001111 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => 5
010000 => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => 6
010001 => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => 6
010010 => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 6
010011 => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => 6
010100 => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => 6
010101 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 6
010110 => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => 6
010111 => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => 6
011000 => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => 6
011001 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => 6
011010 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 6
011011 => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => 6
011100 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => 6
011101 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => 6
011110 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => 6
011111 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 6
100000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 6
100001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => 6
100010 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => 6
100011 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => 6
100100 => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => 6
100101 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 6
100110 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => 6
>>> Load all 254 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The position of the first return of a Dyck path.
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
decomposition reverse
Description
This map is recursively defined as follows.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
Map
delta morphism
Description
Applies the delta morphism to a binary word.
The delta morphism of a finite word $w$ is the integer compositions composed of the lengths of consecutive runs of the same letter in $w$.
The delta morphism of a finite word $w$ is the integer compositions composed of the lengths of consecutive runs of the same letter in $w$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!