Identifier
Values
[1] => 1 => ([(0,1)],2) => 1
[1,1] => 11 => ([(0,2),(2,1)],3) => 1
[2] => 10 => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,1] => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[1,2] => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[2,1] => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 1
[3] => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[1,1,1,1] => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,2] => 1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
[1,3] => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 1
[4] => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
[1,1,1,1,1] => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,2] => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[1,1,3] => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,4] => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[5] => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[1,1,1,1,1,1] => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[1,1,1,1,1,1,1] => 1111111 => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => 1
[1,1,1,1,1,1,1,1] => 11111111 => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9) => 1
[1,1,1,1,1,1,1,1,1] => 111111111 => ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10) => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of minimal elements in a poset.
Map
to binary word
Description
Return the composition as a binary word, treating ones as separators.
Encoding a positive integer $i$ as the word $10\dots 0$ consisting of a one followed by $i-1$ zeros, the binary word of a composition $(i_1,\dots,i_k)$ is the concatenation of of words for $i_1,\dots,i_k$.
The image of this map contains precisely the words which do not begin with a $0$.
Map
poset of factors
Description
The poset of factors of a binary word.
This is the partial order on the set of distinct factors of a binary word, such that $u < v$ if and only if $u$ is a factor of $v$.