Identifier
-
Mp00178:
Binary words
—to composition⟶
Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
St000070: Posets ⟶ ℤ
Values
0 => [2] => [[2],[]] => ([(0,1)],2) => 3
1 => [1,1] => [[1,1],[]] => ([(0,1)],2) => 3
00 => [3] => [[3],[]] => ([(0,2),(2,1)],3) => 4
01 => [2,1] => [[2,2],[1]] => ([(0,2),(1,2)],3) => 5
10 => [1,2] => [[2,1],[]] => ([(0,1),(0,2)],3) => 5
11 => [1,1,1] => [[1,1,1],[]] => ([(0,2),(2,1)],3) => 4
000 => [4] => [[4],[]] => ([(0,3),(2,1),(3,2)],4) => 5
001 => [3,1] => [[3,3],[2]] => ([(0,3),(1,2),(2,3)],4) => 7
010 => [2,2] => [[3,2],[1]] => ([(0,3),(1,2),(1,3)],4) => 8
011 => [2,1,1] => [[2,2,2],[1,1]] => ([(0,3),(1,2),(2,3)],4) => 7
100 => [1,3] => [[3,1],[]] => ([(0,2),(0,3),(3,1)],4) => 7
101 => [1,2,1] => [[2,2,1],[1]] => ([(0,3),(1,2),(1,3)],4) => 8
110 => [1,1,2] => [[2,1,1],[]] => ([(0,2),(0,3),(3,1)],4) => 7
111 => [1,1,1,1] => [[1,1,1,1],[]] => ([(0,3),(2,1),(3,2)],4) => 5
0000 => [5] => [[5],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 6
0001 => [4,1] => [[4,4],[3]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 9
0010 => [3,2] => [[4,3],[2]] => ([(0,3),(1,2),(1,4),(3,4)],5) => 11
0011 => [3,1,1] => [[3,3,3],[2,2]] => ([(0,3),(1,2),(2,4),(3,4)],5) => 10
0100 => [2,3] => [[4,2],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => 11
0101 => [2,2,1] => [[3,3,2],[2,1]] => ([(0,4),(1,3),(2,3),(2,4)],5) => 13
0110 => [2,1,2] => [[3,2,2],[1,1]] => ([(0,4),(1,2),(1,3),(3,4)],5) => 12
0111 => [2,1,1,1] => [[2,2,2,2],[1,1,1]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 9
1000 => [1,4] => [[4,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => 9
1001 => [1,3,1] => [[3,3,1],[2]] => ([(0,4),(1,2),(1,3),(3,4)],5) => 12
1010 => [1,2,2] => [[3,2,1],[1]] => ([(0,3),(0,4),(1,2),(1,4)],5) => 13
1011 => [1,2,1,1] => [[2,2,2,1],[1,1]] => ([(0,3),(1,2),(1,4),(3,4)],5) => 11
1100 => [1,1,3] => [[3,1,1],[]] => ([(0,3),(0,4),(3,2),(4,1)],5) => 10
1101 => [1,1,2,1] => [[2,2,1,1],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => 11
1110 => [1,1,1,2] => [[2,1,1,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => 9
1111 => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 6
00000 => [6] => [[6],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 7
00001 => [5,1] => [[5,5],[4]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => 11
00010 => [4,2] => [[5,4],[3]] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6) => 14
00011 => [4,1,1] => [[4,4,4],[3,3]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => 13
00100 => [3,3] => [[5,3],[2]] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6) => 15
00101 => [3,2,1] => [[4,4,3],[3,2]] => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => 18
00110 => [3,1,2] => [[4,3,3],[2,2]] => ([(0,4),(1,2),(1,3),(3,5),(4,5)],6) => 17
00111 => [3,1,1,1] => [[3,3,3,3],[2,2,2]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => 13
01000 => [2,4] => [[5,2],[1]] => ([(0,5),(1,4),(1,5),(3,2),(4,3)],6) => 14
01001 => [2,3,1] => [[4,4,2],[3,1]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 19
01010 => [2,2,2] => [[4,3,2],[2,1]] => ([(0,4),(1,4),(1,5),(2,3),(2,5)],6) => 21
01011 => [2,2,1,1] => [[3,3,3,2],[2,2,1]] => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => 18
01100 => [2,1,3] => [[4,2,2],[1,1]] => ([(0,5),(1,3),(1,4),(3,5),(4,2)],6) => 17
01101 => [2,1,2,1] => [[3,3,2,2],[2,1,1]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 19
01110 => [2,1,1,2] => [[3,2,2,2],[1,1,1]] => ([(0,5),(1,2),(1,4),(3,5),(4,3)],6) => 16
01111 => [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => 11
10000 => [1,5] => [[5,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => 11
10001 => [1,4,1] => [[4,4,1],[3]] => ([(0,5),(1,2),(1,4),(3,5),(4,3)],6) => 16
10010 => [1,3,2] => [[4,3,1],[2]] => ([(0,4),(0,5),(1,2),(1,3),(3,5)],6) => 19
10011 => [1,3,1,1] => [[3,3,3,1],[2,2]] => ([(0,4),(1,2),(1,3),(3,5),(4,5)],6) => 17
10100 => [1,2,3] => [[4,2,1],[1]] => ([(0,3),(0,5),(1,4),(1,5),(4,2)],6) => 18
10101 => [1,2,2,1] => [[3,3,2,1],[2,1]] => ([(0,4),(1,4),(1,5),(2,3),(2,5)],6) => 21
10110 => [1,2,1,2] => [[3,2,2,1],[1,1]] => ([(0,4),(0,5),(1,2),(1,3),(3,5)],6) => 19
10111 => [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6) => 14
11000 => [1,1,4] => [[4,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => 13
11001 => [1,1,3,1] => [[3,3,1,1],[2]] => ([(0,5),(1,3),(1,4),(3,5),(4,2)],6) => 17
11010 => [1,1,2,2] => [[3,2,1,1],[1]] => ([(0,3),(0,5),(1,4),(1,5),(4,2)],6) => 18
11011 => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6) => 15
11100 => [1,1,1,3] => [[3,1,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => 13
11101 => [1,1,1,2,1] => [[2,2,1,1,1],[1]] => ([(0,5),(1,4),(1,5),(3,2),(4,3)],6) => 14
11110 => [1,1,1,1,2] => [[2,1,1,1,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => 11
11111 => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 7
000000 => [7] => [[7],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 8
000001 => [6,1] => [[6,6],[5]] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7) => 13
000010 => [5,2] => [[6,5],[4]] => ([(0,5),(1,3),(1,6),(2,6),(4,2),(5,4)],7) => 17
000011 => [5,1,1] => [[5,5,5],[4,4]] => ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7) => 16
000100 => [4,3] => [[6,4],[3]] => ([(0,4),(1,5),(1,6),(3,6),(4,3),(5,2)],7) => 19
000101 => [4,2,1] => [[5,5,4],[4,3]] => ([(0,5),(1,5),(1,6),(2,3),(3,4),(4,6)],7) => 23
000110 => [4,1,2] => [[5,4,4],[3,3]] => ([(0,5),(1,2),(1,4),(3,6),(4,6),(5,3)],7) => 22
000111 => [4,1,1,1] => [[4,4,4,4],[3,3,3]] => ([(0,5),(1,4),(2,6),(3,6),(4,2),(5,3)],7) => 17
001000 => [3,4] => [[6,3],[2]] => ([(0,3),(1,5),(1,6),(3,6),(4,2),(5,4)],7) => 19
001001 => [3,3,1] => [[5,5,3],[4,2]] => ([(0,6),(1,3),(2,4),(2,5),(3,5),(4,6)],7) => 26
001010 => [3,2,2] => [[5,4,3],[3,2]] => ([(0,5),(0,6),(1,4),(2,3),(2,5),(4,6)],7) => 29
001011 => [3,2,1,1] => [[4,4,4,3],[3,3,2]] => ([(0,5),(0,6),(1,4),(2,3),(3,5),(4,6)],7) => 25
001100 => [3,1,3] => [[5,3,3],[2,2]] => ([(0,4),(1,3),(1,5),(3,6),(4,6),(5,2)],7) => 24
001101 => [3,1,2,1] => [[4,4,3,3],[3,2,2]] => ([(0,5),(1,3),(2,4),(2,5),(3,6),(4,6)],7) => 27
001110 => [3,1,1,2] => [[4,3,3,3],[2,2,2]] => ([(0,4),(1,2),(1,5),(3,6),(4,6),(5,3)],7) => 23
001111 => [3,1,1,1,1] => [[3,3,3,3,3],[2,2,2,2]] => ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7) => 16
010000 => [2,5] => [[6,2],[1]] => ([(0,6),(1,5),(1,6),(3,4),(4,2),(5,3)],7) => 17
010001 => [2,4,1] => [[5,5,2],[4,1]] => ([(0,5),(1,6),(2,3),(2,5),(3,4),(4,6)],7) => 25
010010 => [2,3,2] => [[5,4,2],[3,1]] => ([(0,5),(1,3),(1,6),(2,4),(2,5),(4,6)],7) => 30
010011 => [2,3,1,1] => [[4,4,4,2],[3,3,1]] => ([(0,5),(1,3),(2,4),(2,5),(3,6),(4,6)],7) => 27
010100 => [2,2,3] => [[5,3,2],[2,1]] => ([(0,5),(1,5),(1,6),(2,3),(2,6),(3,4)],7) => 29
010101 => [2,2,2,1] => [[4,4,3,2],[3,2,1]] => ([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6)],7) => 34
010110 => [2,2,1,2] => [[4,3,3,2],[2,2,1]] => ([(0,5),(1,5),(1,6),(2,3),(2,4),(4,6)],7) => 31
010111 => [2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]] => ([(0,5),(1,5),(1,6),(2,3),(3,4),(4,6)],7) => 23
011000 => [2,1,4] => [[5,2,2],[1,1]] => ([(0,6),(1,3),(1,5),(3,6),(4,2),(5,4)],7) => 22
011001 => [2,1,3,1] => [[4,4,2,2],[3,1,1]] => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 29
011010 => [2,1,2,2] => [[4,3,2,2],[2,1,1]] => ([(0,6),(1,3),(1,5),(2,4),(2,5),(4,6)],7) => 31
011011 => [2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]] => ([(0,6),(1,3),(2,4),(2,5),(3,5),(4,6)],7) => 26
011100 => [2,1,1,3] => [[4,2,2,2],[1,1,1]] => ([(0,6),(1,4),(1,5),(3,6),(4,2),(5,3)],7) => 23
011101 => [2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]] => ([(0,5),(1,6),(2,3),(2,5),(3,4),(4,6)],7) => 25
011110 => [2,1,1,1,2] => [[3,2,2,2,2],[1,1,1,1]] => ([(0,6),(1,2),(1,5),(3,6),(4,3),(5,4)],7) => 20
011111 => [2,1,1,1,1,1] => [[2,2,2,2,2,2],[1,1,1,1,1]] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7) => 13
100000 => [1,6] => [[6,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7) => 13
100001 => [1,5,1] => [[5,5,1],[4]] => ([(0,6),(1,2),(1,5),(3,6),(4,3),(5,4)],7) => 20
100010 => [1,4,2] => [[5,4,1],[3]] => ([(0,4),(0,6),(1,2),(1,5),(3,6),(5,3)],7) => 25
100011 => [1,4,1,1] => [[4,4,4,1],[3,3]] => ([(0,4),(1,2),(1,5),(3,6),(4,6),(5,3)],7) => 23
100100 => [1,3,3] => [[5,3,1],[2]] => ([(0,5),(0,6),(1,3),(1,4),(4,6),(5,2)],7) => 26
100101 => [1,3,2,1] => [[4,4,3,1],[3,2]] => ([(0,5),(1,5),(1,6),(2,3),(2,4),(4,6)],7) => 31
100110 => [1,3,1,2] => [[4,3,3,1],[2,2]] => ([(0,3),(0,5),(1,2),(1,4),(4,6),(5,6)],7) => 29
>>> Load all 144 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of antichains in a poset.
An antichain in a poset P is a subset of elements of P which are pairwise incomparable.
An order ideal is a subset I of P such that a∈I and b≤Pa implies b∈I. Since there is a one-to-one correspondence between antichains and order ideals, this statistic is also the number of order ideals in a poset.
An antichain in a poset P is a subset of elements of P which are pairwise incomparable.
An order ideal is a subset I of P such that a∈I and b≤Pa implies b∈I. Since there is a one-to-one correspondence between antichains and order ideals, this statistic is also the number of order ideals in a poset.
Map
to composition
Description
The composition corresponding to a binary word.
Prepending 1 to a binary word w, the i-th part of the composition equals 1 plus the number of zeros after the i-th 1 in w.
This map is not surjective, since the empty composition does not have a preimage.
Prepending 1 to a binary word w, the i-th part of the composition equals 1 plus the number of zeros after the i-th 1 in w.
This map is not surjective, since the empty composition does not have a preimage.
Map
cell poset
Description
The Young diagram of a skew partition regarded as a poset.
This is the poset on the cells of the Young diagram, such that a cell d is greater than a cell c if the entry in d must be larger than the entry of c in any standard Young tableau on the skew partition.
This is the poset on the cells of the Young diagram, such that a cell d is greater than a cell c if the entry in d must be larger than the entry of c in any standard Young tableau on the skew partition.
Map
to ribbon
Description
The ribbon shape corresponding to an integer composition.
For an integer composition (a1,…,an), this is the ribbon shape whose ith row from the bottom has ai cells.
For an integer composition (a1,…,an), this is the ribbon shape whose ith row from the bottom has ai cells.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!