Identifier
- St000089: Integer compositions ⟶ ℤ
Values
=>
[1]=>0
[1,1]=>0
[2]=>0
[1,1,1]=>0
[1,2]=>1
[2,1]=>1
[3]=>0
[1,1,1,1]=>0
[1,1,2]=>1
[1,2,1]=>2
[1,3]=>2
[2,1,1]=>1
[2,2]=>0
[3,1]=>2
[4]=>0
[1,1,1,1,1]=>0
[1,1,1,2]=>1
[1,1,2,1]=>2
[1,1,3]=>2
[1,2,1,1]=>2
[1,2,2]=>1
[1,3,1]=>4
[1,4]=>3
[2,1,1,1]=>1
[2,1,2]=>2
[2,2,1]=>1
[2,3]=>1
[3,1,1]=>2
[3,2]=>1
[4,1]=>3
[5]=>0
[1,1,1,1,1,1]=>0
[1,1,1,1,2]=>1
[1,1,1,2,1]=>2
[1,1,1,3]=>2
[1,1,2,1,1]=>2
[1,1,2,2]=>1
[1,1,3,1]=>4
[1,1,4]=>3
[1,2,1,1,1]=>2
[1,2,1,2]=>3
[1,2,2,1]=>2
[1,2,3]=>2
[1,3,1,1]=>4
[1,3,2]=>3
[1,4,1]=>6
[1,5]=>4
[2,1,1,1,1]=>1
[2,1,1,2]=>2
[2,1,2,1]=>3
[2,1,3]=>3
[2,2,1,1]=>1
[2,2,2]=>0
[2,3,1]=>3
[2,4]=>2
[3,1,1,1]=>2
[3,1,2]=>3
[3,2,1]=>2
[3,3]=>0
[4,1,1]=>3
[4,2]=>2
[5,1]=>4
[6]=>0
[1,1,1,1,1,1,1]=>0
[1,1,1,1,1,2]=>1
[1,1,1,1,2,1]=>2
[1,1,1,1,3]=>2
[1,1,1,2,1,1]=>2
[1,1,1,2,2]=>1
[1,1,1,3,1]=>4
[1,1,1,4]=>3
[1,1,2,1,1,1]=>2
[1,1,2,1,2]=>3
[1,1,2,2,1]=>2
[1,1,2,3]=>2
[1,1,3,1,1]=>4
[1,1,3,2]=>3
[1,1,4,1]=>6
[1,1,5]=>4
[1,2,1,1,1,1]=>2
[1,2,1,1,2]=>3
[1,2,1,2,1]=>4
[1,2,1,3]=>4
[1,2,2,1,1]=>2
[1,2,2,2]=>1
[1,2,3,1]=>4
[1,2,4]=>3
[1,3,1,1,1]=>4
[1,3,1,2]=>5
[1,3,2,1]=>4
[1,3,3]=>2
[1,4,1,1]=>6
[1,4,2]=>5
[1,5,1]=>8
[1,6]=>5
[2,1,1,1,1,1]=>1
[2,1,1,1,2]=>2
[2,1,1,2,1]=>3
[2,1,1,3]=>3
[2,1,2,1,1]=>3
[2,1,2,2]=>2
[2,1,3,1]=>5
[2,1,4]=>4
[2,2,1,1,1]=>1
[2,2,1,2]=>2
[2,2,2,1]=>1
[2,2,3]=>1
[2,3,1,1]=>3
[2,3,2]=>2
[2,4,1]=>5
[2,5]=>3
[3,1,1,1,1]=>2
[3,1,1,2]=>3
[3,1,2,1]=>4
[3,1,3]=>4
[3,2,1,1]=>2
[3,2,2]=>1
[3,3,1]=>2
[3,4]=>1
[4,1,1,1]=>3
[4,1,2]=>4
[4,2,1]=>3
[4,3]=>1
[5,1,1]=>4
[5,2]=>3
[6,1]=>5
[7]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The absolute variation of a composition.
References
[1] Archibald, M., Knopfmacher, A., Mansour, T. Variation statistics on compositions MathSciNet:2977908
Code
def statistic(alp): return sum([abs(alp[i+1]-alp[i]) for i in range(len(alp) - 1)])
Created
Jun 13, 2013 at 15:51 by Chris Berg
Updated
May 29, 2015 at 16:46 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!