Identifier
- St000174: Semistandard tableaux ⟶ ℤ
Values
=>
Cc0019;cc-rep
[[1]]=>0
[[2]]=>1
[[3]]=>1
[[4]]=>1
[[1,1]]=>0
[[1,2]]=>0
[[2,2]]=>1
[[1],[2]]=>0
[[1,3]]=>0
[[2,3]]=>1
[[3,3]]=>1
[[1],[3]]=>1
[[2],[3]]=>2
[[1,4]]=>0
[[2,4]]=>1
[[3,4]]=>1
[[4,4]]=>1
[[1],[4]]=>1
[[2],[4]]=>2
[[3],[4]]=>2
[[1,1,1]]=>0
[[1,1,2]]=>0
[[1,2,2]]=>0
[[2,2,2]]=>1
[[1,1],[2]]=>0
[[1,2],[2]]=>1
[[1,1,3]]=>0
[[1,2,3]]=>0
[[1,3,3]]=>0
[[2,2,3]]=>1
[[2,3,3]]=>1
[[3,3,3]]=>1
[[1,1],[3]]=>1
[[1,2],[3]]=>1
[[1,3],[2]]=>1
[[1,3],[3]]=>2
[[2,2],[3]]=>2
[[2,3],[3]]=>3
[[1],[2],[3]]=>0
[[1,1,4]]=>0
[[1,2,4]]=>0
[[1,3,4]]=>0
[[1,4,4]]=>0
[[2,2,4]]=>1
[[2,3,4]]=>1
[[2,4,4]]=>1
[[3,3,4]]=>1
[[3,4,4]]=>1
[[4,4,4]]=>1
[[1,1],[4]]=>1
[[1,2],[4]]=>1
[[1,4],[2]]=>1
[[1,3],[4]]=>1
[[1,4],[3]]=>2
[[1,4],[4]]=>2
[[2,2],[4]]=>2
[[2,3],[4]]=>2
[[2,4],[3]]=>3
[[2,4],[4]]=>3
[[3,3],[4]]=>2
[[3,4],[4]]=>3
[[1],[2],[4]]=>1
[[1],[3],[4]]=>2
[[2],[3],[4]]=>3
[[1,1,1,1]]=>0
[[1,1,1,2]]=>0
[[1,1,2,2]]=>0
[[1,2,2,2]]=>0
[[2,2,2,2]]=>1
[[1,1,1],[2]]=>0
[[1,1,2],[2]]=>0
[[1,2,2],[2]]=>1
[[1,1],[2,2]]=>0
[[1,1,1,3]]=>0
[[1,1,2,3]]=>0
[[1,1,3,3]]=>0
[[1,2,2,3]]=>0
[[1,2,3,3]]=>0
[[1,3,3,3]]=>0
[[2,2,2,3]]=>1
[[2,2,3,3]]=>1
[[2,3,3,3]]=>1
[[3,3,3,3]]=>1
[[1,1,1],[3]]=>1
[[1,1,2],[3]]=>1
[[1,1,3],[2]]=>0
[[1,1,3],[3]]=>1
[[1,2,2],[3]]=>1
[[1,2,3],[2]]=>1
[[1,2,3],[3]]=>1
[[1,3,3],[2]]=>1
[[1,3,3],[3]]=>2
[[2,2,2],[3]]=>2
[[2,2,3],[3]]=>2
[[2,3,3],[3]]=>3
[[1,1],[2,3]]=>0
[[1,1],[3,3]]=>1
[[1,2],[2,3]]=>1
[[1,2],[3,3]]=>1
[[2,2],[3,3]]=>2
[[1,1],[2],[3]]=>0
[[1,2],[2],[3]]=>1
[[1,3],[2],[3]]=>1
[[1,1,1,4]]=>0
[[1,1,2,4]]=>0
[[1,1,3,4]]=>0
[[1,1,4,4]]=>0
[[1,2,2,4]]=>0
[[1,2,3,4]]=>0
[[1,2,4,4]]=>0
[[1,3,3,4]]=>0
[[1,3,4,4]]=>0
[[1,4,4,4]]=>0
[[2,2,2,4]]=>1
[[2,2,3,4]]=>1
[[2,2,4,4]]=>1
[[2,3,3,4]]=>1
[[2,3,4,4]]=>1
[[2,4,4,4]]=>1
[[3,3,3,4]]=>1
[[3,3,4,4]]=>1
[[3,4,4,4]]=>1
[[4,4,4,4]]=>1
[[1,1,1],[4]]=>1
[[1,1,2],[4]]=>1
[[1,1,4],[2]]=>0
[[1,1,3],[4]]=>1
[[1,1,4],[3]]=>1
[[1,1,4],[4]]=>1
[[1,2,2],[4]]=>1
[[1,2,4],[2]]=>1
[[1,2,3],[4]]=>1
[[1,2,4],[3]]=>1
[[1,3,4],[2]]=>1
[[1,2,4],[4]]=>1
[[1,4,4],[2]]=>1
[[1,3,3],[4]]=>1
[[1,3,4],[3]]=>2
[[1,3,4],[4]]=>1
[[1,4,4],[3]]=>2
[[1,4,4],[4]]=>2
[[2,2,2],[4]]=>2
[[2,2,3],[4]]=>2
[[2,2,4],[3]]=>2
[[2,2,4],[4]]=>2
[[2,3,3],[4]]=>2
[[2,3,4],[3]]=>3
[[2,3,4],[4]]=>2
[[2,4,4],[3]]=>3
[[2,4,4],[4]]=>3
[[3,3,3],[4]]=>2
[[3,3,4],[4]]=>2
[[3,4,4],[4]]=>3
[[1,1],[2,4]]=>0
[[1,1],[3,4]]=>1
[[1,1],[4,4]]=>1
[[1,2],[2,4]]=>1
[[1,2],[3,4]]=>2
[[1,3],[2,4]]=>1
[[1,2],[4,4]]=>1
[[1,3],[3,4]]=>2
[[1,3],[4,4]]=>1
[[2,2],[3,4]]=>2
[[2,2],[4,4]]=>2
[[2,3],[3,4]]=>3
[[2,3],[4,4]]=>2
[[3,3],[4,4]]=>2
[[1,1],[2],[4]]=>1
[[1,1],[3],[4]]=>2
[[1,2],[2],[4]]=>2
[[1,2],[3],[4]]=>2
[[1,3],[2],[4]]=>2
[[1,4],[2],[3]]=>1
[[1,4],[2],[4]]=>2
[[1,3],[3],[4]]=>3
[[1,4],[3],[4]]=>3
[[2,2],[3],[4]]=>3
[[2,3],[3],[4]]=>4
[[2,4],[3],[4]]=>4
[[1],[2],[3],[4]]=>0
[[1,1,1,1,1]]=>0
[[1,1,1,1,2]]=>0
[[1,1,1,2,2]]=>0
[[1,1,2,2,2]]=>0
[[1,2,2,2,2]]=>0
[[2,2,2,2,2]]=>1
[[1,1,1,1],[2]]=>0
[[1,1,1,2],[2]]=>0
[[1,1,2,2],[2]]=>0
[[1,2,2,2],[2]]=>1
[[1,1,1],[2,2]]=>0
[[1,1,2],[2,2]]=>1
[[1,1,1,1,3]]=>0
[[1,1,1,2,3]]=>0
[[1,1,1,3,3]]=>0
[[1,1,2,2,3]]=>0
[[1,1,2,3,3]]=>0
[[1,1,3,3,3]]=>0
[[1,2,2,2,3]]=>0
[[1,2,2,3,3]]=>0
[[1,2,3,3,3]]=>0
[[1,3,3,3,3]]=>0
[[2,2,2,2,3]]=>1
[[2,2,2,3,3]]=>1
[[2,2,3,3,3]]=>1
[[2,3,3,3,3]]=>1
[[3,3,3,3,3]]=>1
[[1,1,1,1],[3]]=>1
[[1,1,1,2],[3]]=>1
[[1,1,1,3],[2]]=>0
[[1,1,1,3],[3]]=>1
[[1,1,2,2],[3]]=>1
[[1,1,2,3],[2]]=>0
[[1,1,2,3],[3]]=>1
[[1,1,3,3],[2]]=>0
[[1,1,3,3],[3]]=>1
[[1,2,2,2],[3]]=>1
[[1,2,2,3],[2]]=>1
[[1,2,2,3],[3]]=>1
[[1,2,3,3],[2]]=>1
[[1,2,3,3],[3]]=>1
[[1,3,3,3],[2]]=>1
[[1,3,3,3],[3]]=>2
[[2,2,2,2],[3]]=>2
[[2,2,2,3],[3]]=>2
[[2,2,3,3],[3]]=>2
[[2,3,3,3],[3]]=>3
[[1,1,1],[2,3]]=>0
[[1,1,1],[3,3]]=>1
[[1,1,2],[2,3]]=>0
[[1,1,3],[2,2]]=>1
[[1,1,2],[3,3]]=>1
[[1,1,3],[2,3]]=>1
[[1,1,3],[3,3]]=>2
[[1,2,2],[2,3]]=>1
[[1,2,2],[3,3]]=>1
[[1,2,3],[2,3]]=>2
[[1,2,3],[3,3]]=>2
[[2,2,2],[3,3]]=>2
[[2,2,3],[3,3]]=>3
[[1,1,1],[2],[3]]=>0
[[1,1,2],[2],[3]]=>0
[[1,1,3],[2],[3]]=>0
[[1,2,2],[2],[3]]=>1
[[1,2,3],[2],[3]]=>1
[[1,3,3],[2],[3]]=>1
[[1,1],[2,2],[3]]=>0
[[1,1],[2,3],[3]]=>1
[[1,2],[2,3],[3]]=>2
[[1,1,1,1,4]]=>0
[[1,1,1,2,4]]=>0
[[1,1,1,3,4]]=>0
[[1,1,1,4,4]]=>0
[[1,1,2,2,4]]=>0
[[1,1,2,3,4]]=>0
[[1,1,2,4,4]]=>0
[[1,1,3,3,4]]=>0
[[1,1,3,4,4]]=>0
[[1,1,4,4,4]]=>0
[[1,2,2,2,4]]=>0
[[1,2,2,3,4]]=>0
[[1,2,2,4,4]]=>0
[[1,2,3,3,4]]=>0
[[1,2,3,4,4]]=>0
[[1,2,4,4,4]]=>0
[[1,3,3,3,4]]=>0
[[1,3,3,4,4]]=>0
[[1,3,4,4,4]]=>0
[[1,4,4,4,4]]=>0
[[2,2,2,2,4]]=>1
[[2,2,2,3,4]]=>1
[[2,2,2,4,4]]=>1
[[2,2,3,3,4]]=>1
[[2,2,3,4,4]]=>1
[[2,2,4,4,4]]=>1
[[2,3,3,3,4]]=>1
[[2,3,3,4,4]]=>1
[[2,3,4,4,4]]=>1
[[2,4,4,4,4]]=>1
[[3,3,3,3,4]]=>1
[[3,3,3,4,4]]=>1
[[3,3,4,4,4]]=>1
[[3,4,4,4,4]]=>1
[[4,4,4,4,4]]=>1
[[1,1,1,1],[4]]=>1
[[1,1,1,2],[4]]=>1
[[1,1,1,4],[2]]=>0
[[1,1,1,3],[4]]=>1
[[1,1,1,4],[3]]=>1
[[1,1,1,4],[4]]=>1
[[1,1,2,2],[4]]=>1
[[1,1,2,4],[2]]=>0
[[1,1,2,3],[4]]=>1
[[1,1,2,4],[3]]=>1
[[1,1,3,4],[2]]=>0
[[1,1,2,4],[4]]=>1
[[1,1,4,4],[2]]=>0
[[1,1,3,3],[4]]=>1
[[1,1,3,4],[3]]=>1
[[1,1,3,4],[4]]=>1
[[1,1,4,4],[3]]=>1
[[1,1,4,4],[4]]=>1
[[1,2,2,2],[4]]=>1
[[1,2,2,4],[2]]=>1
[[1,2,2,3],[4]]=>1
[[1,2,2,4],[3]]=>1
[[1,2,3,4],[2]]=>1
[[1,2,2,4],[4]]=>1
[[1,2,4,4],[2]]=>1
[[1,2,3,3],[4]]=>1
[[1,2,3,4],[3]]=>1
[[1,3,3,4],[2]]=>1
[[1,2,3,4],[4]]=>1
[[1,2,4,4],[3]]=>1
[[1,3,4,4],[2]]=>1
[[1,2,4,4],[4]]=>1
[[1,4,4,4],[2]]=>1
[[1,3,3,3],[4]]=>1
[[1,3,3,4],[3]]=>2
[[1,3,3,4],[4]]=>1
[[1,3,4,4],[3]]=>2
[[1,3,4,4],[4]]=>1
[[1,4,4,4],[3]]=>2
[[1,4,4,4],[4]]=>2
[[2,2,2,2],[4]]=>2
[[2,2,2,3],[4]]=>2
[[2,2,2,4],[3]]=>2
[[2,2,2,4],[4]]=>2
[[2,2,3,3],[4]]=>2
[[2,2,3,4],[3]]=>2
[[2,2,3,4],[4]]=>2
[[2,2,4,4],[3]]=>2
[[2,2,4,4],[4]]=>2
[[2,3,3,3],[4]]=>2
[[2,3,3,4],[3]]=>3
[[2,3,3,4],[4]]=>2
[[2,3,4,4],[3]]=>3
[[2,3,4,4],[4]]=>2
[[2,4,4,4],[3]]=>3
[[2,4,4,4],[4]]=>3
[[3,3,3,3],[4]]=>2
[[3,3,3,4],[4]]=>2
[[3,3,4,4],[4]]=>2
[[3,4,4,4],[4]]=>3
[[1,1,1],[2,4]]=>0
[[1,1,1],[3,4]]=>1
[[1,1,1],[4,4]]=>1
[[1,1,2],[2,4]]=>0
[[1,1,4],[2,2]]=>1
[[1,1,2],[3,4]]=>1
[[1,1,3],[2,4]]=>0
[[1,1,4],[2,3]]=>1
[[1,1,2],[4,4]]=>1
[[1,1,4],[2,4]]=>1
[[1,1,3],[3,4]]=>1
[[1,1,4],[3,3]]=>2
[[1,1,3],[4,4]]=>1
[[1,1,4],[3,4]]=>2
[[1,1,4],[4,4]]=>2
[[1,2,2],[2,4]]=>1
[[1,2,2],[3,4]]=>2
[[1,2,3],[2,4]]=>1
[[1,2,4],[2,3]]=>2
[[1,2,2],[4,4]]=>1
[[1,2,4],[2,4]]=>2
[[1,2,3],[3,4]]=>2
[[1,2,4],[3,3]]=>2
[[1,3,3],[2,4]]=>1
[[1,2,3],[4,4]]=>1
[[1,2,4],[3,4]]=>3
[[1,3,4],[2,4]]=>2
[[1,2,4],[4,4]]=>2
[[1,3,3],[3,4]]=>2
[[1,3,3],[4,4]]=>1
[[1,3,4],[3,4]]=>3
[[1,3,4],[4,4]]=>2
[[2,2,2],[3,4]]=>2
[[2,2,2],[4,4]]=>2
[[2,2,3],[3,4]]=>2
[[2,2,4],[3,3]]=>3
[[2,2,3],[4,4]]=>2
[[2,2,4],[3,4]]=>3
[[2,2,4],[4,4]]=>3
[[2,3,3],[3,4]]=>3
[[2,3,3],[4,4]]=>2
[[2,3,4],[3,4]]=>4
[[2,3,4],[4,4]]=>3
[[3,3,3],[4,4]]=>2
[[3,3,4],[4,4]]=>3
[[1,1,1],[2],[4]]=>1
[[1,1,1],[3],[4]]=>2
[[1,1,2],[2],[4]]=>1
[[1,1,2],[3],[4]]=>2
[[1,1,3],[2],[4]]=>1
[[1,1,4],[2],[3]]=>0
[[1,1,4],[2],[4]]=>1
[[1,1,3],[3],[4]]=>2
[[1,1,4],[3],[4]]=>2
[[1,2,2],[2],[4]]=>2
[[1,2,2],[3],[4]]=>2
[[1,2,3],[2],[4]]=>2
[[1,2,4],[2],[3]]=>1
[[1,2,4],[2],[4]]=>2
[[1,2,3],[3],[4]]=>2
[[1,3,3],[2],[4]]=>2
[[1,3,4],[2],[3]]=>1
[[1,2,4],[3],[4]]=>2
[[1,3,4],[2],[4]]=>2
[[1,4,4],[2],[3]]=>1
[[1,4,4],[2],[4]]=>2
[[1,3,3],[3],[4]]=>3
[[1,3,4],[3],[4]]=>3
[[1,4,4],[3],[4]]=>3
[[2,2,2],[3],[4]]=>3
[[2,2,3],[3],[4]]=>3
[[2,2,4],[3],[4]]=>3
[[2,3,3],[3],[4]]=>4
[[2,3,4],[3],[4]]=>4
[[2,4,4],[3],[4]]=>4
[[1,1],[2,2],[4]]=>1
[[1,1],[2,3],[4]]=>1
[[1,1],[2,4],[3]]=>1
[[1,1],[2,4],[4]]=>2
[[1,1],[3,3],[4]]=>2
[[1,1],[3,4],[4]]=>3
[[1,2],[2,3],[4]]=>2
[[1,2],[2,4],[3]]=>2
[[1,2],[2,4],[4]]=>3
[[1,2],[3,3],[4]]=>2
[[1,3],[2,4],[3]]=>2
[[1,2],[3,4],[4]]=>4
[[1,3],[2,4],[4]]=>3
[[1,3],[3,4],[4]]=>4
[[2,2],[3,3],[4]]=>3
[[2,2],[3,4],[4]]=>4
[[2,3],[3,4],[4]]=>5
[[1,1],[2],[3],[4]]=>0
[[1,2],[2],[3],[4]]=>1
[[1,3],[2],[3],[4]]=>1
[[1,4],[2],[3],[4]]=>1
[[1,1,1,1,1,1]]=>0
[[1,1,1,1,1,2]]=>0
[[1,1,1,1,2,2]]=>0
[[1,1,1,2,2,2]]=>0
[[1,1,2,2,2,2]]=>0
[[1,2,2,2,2,2]]=>0
[[2,2,2,2,2,2]]=>1
[[1,1,1,1,1],[2]]=>0
[[1,1,1,1,2],[2]]=>0
[[1,1,1,2,2],[2]]=>0
[[1,1,2,2,2],[2]]=>0
[[1,2,2,2,2],[2]]=>1
[[1,1,1,1],[2,2]]=>0
[[1,1,1,2],[2,2]]=>0
[[1,1,2,2],[2,2]]=>1
[[1,1,1],[2,2,2]]=>0
[[1,1,1,1,1,3]]=>0
[[1,1,1,1,2,3]]=>0
[[1,1,1,1,3,3]]=>0
[[1,1,1,2,2,3]]=>0
[[1,1,1,2,3,3]]=>0
[[1,1,1,3,3,3]]=>0
[[1,1,2,2,2,3]]=>0
[[1,1,2,2,3,3]]=>0
[[1,1,2,3,3,3]]=>0
[[1,1,3,3,3,3]]=>0
[[1,2,2,2,2,3]]=>0
[[1,2,2,2,3,3]]=>0
[[1,2,2,3,3,3]]=>0
[[1,2,3,3,3,3]]=>0
[[1,3,3,3,3,3]]=>0
[[2,2,2,2,2,3]]=>1
[[2,2,2,2,3,3]]=>1
[[2,2,2,3,3,3]]=>1
[[2,2,3,3,3,3]]=>1
[[2,3,3,3,3,3]]=>1
[[3,3,3,3,3,3]]=>1
[[1,1,1,1,1],[3]]=>1
[[1,1,1,1,2],[3]]=>1
[[1,1,1,1,3],[2]]=>0
[[1,1,1,1,3],[3]]=>1
[[1,1,1,2,2],[3]]=>1
[[1,1,1,2,3],[2]]=>0
[[1,1,1,2,3],[3]]=>1
[[1,1,1,3,3],[2]]=>0
[[1,1,1,3,3],[3]]=>1
[[1,1,2,2,2],[3]]=>1
[[1,1,2,2,3],[2]]=>0
[[1,1,2,2,3],[3]]=>1
[[1,1,2,3,3],[2]]=>0
[[1,1,2,3,3],[3]]=>1
[[1,1,3,3,3],[2]]=>0
[[1,1,3,3,3],[3]]=>1
[[1,2,2,2,2],[3]]=>1
[[1,2,2,2,3],[2]]=>1
[[1,2,2,2,3],[3]]=>1
[[1,2,2,3,3],[2]]=>1
[[1,2,2,3,3],[3]]=>1
[[1,2,3,3,3],[2]]=>1
[[1,2,3,3,3],[3]]=>1
[[1,3,3,3,3],[2]]=>1
[[1,3,3,3,3],[3]]=>2
[[2,2,2,2,2],[3]]=>2
[[2,2,2,2,3],[3]]=>2
[[2,2,2,3,3],[3]]=>2
[[2,2,3,3,3],[3]]=>2
[[2,3,3,3,3],[3]]=>3
[[1,1,1,1],[2,3]]=>0
[[1,1,1,1],[3,3]]=>1
[[1,1,1,2],[2,3]]=>0
[[1,1,1,3],[2,2]]=>0
[[1,1,1,2],[3,3]]=>1
[[1,1,1,3],[2,3]]=>0
[[1,1,1,3],[3,3]]=>1
[[1,1,2,2],[2,3]]=>0
[[1,1,2,3],[2,2]]=>1
[[1,1,2,2],[3,3]]=>1
[[1,1,2,3],[2,3]]=>0
[[1,1,3,3],[2,2]]=>1
[[1,1,2,3],[3,3]]=>1
[[1,1,3,3],[2,3]]=>1
[[1,1,3,3],[3,3]]=>2
[[1,2,2,2],[2,3]]=>1
[[1,2,2,2],[3,3]]=>1
[[1,2,2,3],[2,3]]=>1
[[1,2,2,3],[3,3]]=>1
[[1,2,3,3],[2,3]]=>2
[[1,2,3,3],[3,3]]=>2
[[2,2,2,2],[3,3]]=>2
[[2,2,2,3],[3,3]]=>2
[[2,2,3,3],[3,3]]=>3
[[1,1,1,1],[2],[3]]=>0
[[1,1,1,2],[2],[3]]=>0
[[1,1,1,3],[2],[3]]=>0
[[1,1,2,2],[2],[3]]=>0
[[1,1,2,3],[2],[3]]=>0
[[1,1,3,3],[2],[3]]=>0
[[1,2,2,2],[2],[3]]=>1
[[1,2,2,3],[2],[3]]=>1
[[1,2,3,3],[2],[3]]=>1
[[1,3,3,3],[2],[3]]=>1
[[1,1,1],[2,2,3]]=>0
[[1,1,1],[2,3,3]]=>0
[[1,1,1],[3,3,3]]=>1
[[1,1,2],[2,2,3]]=>1
[[1,1,2],[2,3,3]]=>0
[[1,1,2],[3,3,3]]=>1
[[1,2,2],[2,3,3]]=>1
[[1,2,2],[3,3,3]]=>1
[[2,2,2],[3,3,3]]=>2
[[1,1,1],[2,2],[3]]=>0
[[1,1,1],[2,3],[3]]=>1
[[1,1,2],[2,2],[3]]=>1
[[1,1,2],[2,3],[3]]=>1
[[1,1,3],[2,2],[3]]=>1
[[1,1,3],[2,3],[3]]=>2
[[1,2,2],[2,3],[3]]=>2
[[1,2,3],[2,3],[3]]=>3
[[1,1],[2,2],[3,3]]=>0
[[1,1,1,1,1,4]]=>0
[[1,1,1,1,2,4]]=>0
[[1,1,1,1,3,4]]=>0
[[1,1,1,1,4,4]]=>0
[[1,1,1,2,2,4]]=>0
[[1,1,1,2,3,4]]=>0
[[1,1,1,2,4,4]]=>0
[[1,1,1,3,3,4]]=>0
[[1,1,1,3,4,4]]=>0
[[1,1,1,4,4,4]]=>0
[[1,1,2,2,2,4]]=>0
[[1,1,2,2,3,4]]=>0
[[1,1,2,2,4,4]]=>0
[[1,1,2,3,3,4]]=>0
[[1,1,2,3,4,4]]=>0
[[1,1,2,4,4,4]]=>0
[[1,1,3,3,3,4]]=>0
[[1,1,3,3,4,4]]=>0
[[1,1,3,4,4,4]]=>0
[[1,1,4,4,4,4]]=>0
[[1,2,2,2,2,4]]=>0
[[1,2,2,2,3,4]]=>0
[[1,2,2,2,4,4]]=>0
[[1,2,2,3,3,4]]=>0
[[1,2,2,3,4,4]]=>0
[[1,2,2,4,4,4]]=>0
[[1,2,3,3,3,4]]=>0
[[1,2,3,3,4,4]]=>0
[[1,2,3,4,4,4]]=>0
[[1,2,4,4,4,4]]=>0
[[1,3,3,3,3,4]]=>0
[[1,3,3,3,4,4]]=>0
[[1,3,3,4,4,4]]=>0
[[1,3,4,4,4,4]]=>0
[[1,4,4,4,4,4]]=>0
[[2,2,2,2,2,4]]=>1
[[2,2,2,2,3,4]]=>1
[[2,2,2,2,4,4]]=>1
[[2,2,2,3,3,4]]=>1
[[2,2,2,3,4,4]]=>1
[[2,2,2,4,4,4]]=>1
[[2,2,3,3,3,4]]=>1
[[2,2,3,3,4,4]]=>1
[[2,2,3,4,4,4]]=>1
[[2,2,4,4,4,4]]=>1
[[2,3,3,3,3,4]]=>1
[[2,3,3,3,4,4]]=>1
[[2,3,3,4,4,4]]=>1
[[2,3,4,4,4,4]]=>1
[[2,4,4,4,4,4]]=>1
[[3,3,3,3,3,4]]=>1
[[3,3,3,3,4,4]]=>1
[[3,3,3,4,4,4]]=>1
[[3,3,4,4,4,4]]=>1
[[3,4,4,4,4,4]]=>1
[[4,4,4,4,4,4]]=>1
[[1,1,1,1,1],[4]]=>1
[[1,1,1,1,2],[4]]=>1
[[1,1,1,1,4],[2]]=>0
[[1,1,1,1,3],[4]]=>1
[[1,1,1,1,4],[3]]=>1
[[1,1,1,1,4],[4]]=>1
[[1,1,1,2,2],[4]]=>1
[[1,1,1,2,4],[2]]=>0
[[1,1,1,2,3],[4]]=>1
[[1,1,1,2,4],[3]]=>1
[[1,1,1,3,4],[2]]=>0
[[1,1,1,2,4],[4]]=>1
[[1,1,1,4,4],[2]]=>0
[[1,1,1,3,3],[4]]=>1
[[1,1,1,3,4],[3]]=>1
[[1,1,1,3,4],[4]]=>1
[[1,1,1,4,4],[3]]=>1
[[1,1,1,4,4],[4]]=>1
[[1,1,2,2,2],[4]]=>1
[[1,1,2,2,4],[2]]=>0
[[1,1,2,2,3],[4]]=>1
[[1,1,2,2,4],[3]]=>1
[[1,1,2,3,4],[2]]=>0
[[1,1,2,2,4],[4]]=>1
[[1,1,2,4,4],[2]]=>0
[[1,1,2,3,3],[4]]=>1
[[1,1,2,3,4],[3]]=>1
[[1,1,3,3,4],[2]]=>0
[[1,1,2,3,4],[4]]=>1
[[1,1,2,4,4],[3]]=>1
[[1,1,3,4,4],[2]]=>0
[[1,1,2,4,4],[4]]=>1
[[1,1,4,4,4],[2]]=>0
[[1,1,3,3,3],[4]]=>1
[[1,1,3,3,4],[3]]=>1
[[1,1,3,3,4],[4]]=>1
[[1,1,3,4,4],[3]]=>1
[[1,1,3,4,4],[4]]=>1
[[1,1,4,4,4],[3]]=>1
[[1,1,4,4,4],[4]]=>1
[[1,2,2,2,2],[4]]=>1
[[1,2,2,2,4],[2]]=>1
[[1,2,2,2,3],[4]]=>1
[[1,2,2,2,4],[3]]=>1
[[1,2,2,3,4],[2]]=>1
[[1,2,2,2,4],[4]]=>1
[[1,2,2,4,4],[2]]=>1
[[1,2,2,3,3],[4]]=>1
[[1,2,2,3,4],[3]]=>1
[[1,2,3,3,4],[2]]=>1
[[1,2,2,3,4],[4]]=>1
[[1,2,2,4,4],[3]]=>1
[[1,2,3,4,4],[2]]=>1
[[1,2,2,4,4],[4]]=>1
[[1,2,4,4,4],[2]]=>1
[[1,2,3,3,3],[4]]=>1
[[1,2,3,3,4],[3]]=>1
[[1,3,3,3,4],[2]]=>1
[[1,2,3,3,4],[4]]=>1
[[1,2,3,4,4],[3]]=>1
[[1,3,3,4,4],[2]]=>1
[[1,2,3,4,4],[4]]=>1
[[1,2,4,4,4],[3]]=>1
[[1,3,4,4,4],[2]]=>1
[[1,2,4,4,4],[4]]=>1
[[1,4,4,4,4],[2]]=>1
[[1,3,3,3,3],[4]]=>1
[[1,3,3,3,4],[3]]=>2
[[1,3,3,3,4],[4]]=>1
[[1,3,3,4,4],[3]]=>2
[[1,3,3,4,4],[4]]=>1
[[1,3,4,4,4],[3]]=>2
[[1,3,4,4,4],[4]]=>1
[[1,4,4,4,4],[3]]=>2
[[1,4,4,4,4],[4]]=>2
[[2,2,2,2,2],[4]]=>2
[[2,2,2,2,3],[4]]=>2
[[2,2,2,2,4],[3]]=>2
[[2,2,2,2,4],[4]]=>2
[[2,2,2,3,3],[4]]=>2
[[2,2,2,3,4],[3]]=>2
[[2,2,2,3,4],[4]]=>2
[[2,2,2,4,4],[3]]=>2
[[2,2,2,4,4],[4]]=>2
[[2,2,3,3,3],[4]]=>2
[[2,2,3,3,4],[3]]=>2
[[2,2,3,3,4],[4]]=>2
[[2,2,3,4,4],[3]]=>2
[[2,2,3,4,4],[4]]=>2
[[2,2,4,4,4],[3]]=>2
[[2,2,4,4,4],[4]]=>2
[[2,3,3,3,3],[4]]=>2
[[2,3,3,3,4],[3]]=>3
[[2,3,3,3,4],[4]]=>2
[[2,3,3,4,4],[3]]=>3
[[2,3,3,4,4],[4]]=>2
[[2,3,4,4,4],[3]]=>3
[[2,3,4,4,4],[4]]=>2
[[2,4,4,4,4],[3]]=>3
[[2,4,4,4,4],[4]]=>3
[[3,3,3,3,3],[4]]=>2
[[3,3,3,3,4],[4]]=>2
[[3,3,3,4,4],[4]]=>2
[[3,3,4,4,4],[4]]=>2
[[3,4,4,4,4],[4]]=>3
[[1,1,1,1],[2,4]]=>0
[[1,1,1,1],[3,4]]=>1
[[1,1,1,1],[4,4]]=>1
[[1,1,1,2],[2,4]]=>0
[[1,1,1,4],[2,2]]=>0
[[1,1,1,2],[3,4]]=>1
[[1,1,1,3],[2,4]]=>0
[[1,1,1,4],[2,3]]=>0
[[1,1,1,2],[4,4]]=>1
[[1,1,1,4],[2,4]]=>0
[[1,1,1,3],[3,4]]=>1
[[1,1,1,4],[3,3]]=>1
[[1,1,1,3],[4,4]]=>1
[[1,1,1,4],[3,4]]=>1
[[1,1,1,4],[4,4]]=>1
[[1,1,2,2],[2,4]]=>0
[[1,1,2,4],[2,2]]=>1
[[1,1,2,2],[3,4]]=>1
[[1,1,2,3],[2,4]]=>0
[[1,1,2,4],[2,3]]=>0
[[1,1,3,4],[2,2]]=>1
[[1,1,2,2],[4,4]]=>1
[[1,1,2,4],[2,4]]=>0
[[1,1,4,4],[2,2]]=>1
[[1,1,2,3],[3,4]]=>1
[[1,1,2,4],[3,3]]=>1
[[1,1,3,3],[2,4]]=>0
[[1,1,3,4],[2,3]]=>1
[[1,1,2,3],[4,4]]=>1
[[1,1,2,4],[3,4]]=>1
[[1,1,3,4],[2,4]]=>0
[[1,1,4,4],[2,3]]=>1
[[1,1,2,4],[4,4]]=>1
[[1,1,4,4],[2,4]]=>1
[[1,1,3,3],[3,4]]=>1
[[1,1,3,4],[3,3]]=>2
[[1,1,3,3],[4,4]]=>1
[[1,1,3,4],[3,4]]=>1
[[1,1,4,4],[3,3]]=>2
[[1,1,3,4],[4,4]]=>1
[[1,1,4,4],[3,4]]=>2
[[1,1,4,4],[4,4]]=>2
[[1,2,2,2],[2,4]]=>1
[[1,2,2,2],[3,4]]=>2
[[1,2,2,3],[2,4]]=>1
[[1,2,2,4],[2,3]]=>1
[[1,2,2,2],[4,4]]=>1
[[1,2,2,4],[2,4]]=>1
[[1,2,2,3],[3,4]]=>2
[[1,2,2,4],[3,3]]=>1
[[1,2,3,3],[2,4]]=>1
[[1,2,3,4],[2,3]]=>2
[[1,2,2,3],[4,4]]=>1
[[1,2,2,4],[3,4]]=>2
[[1,2,3,4],[2,4]]=>1
[[1,2,4,4],[2,3]]=>2
[[1,2,2,4],[4,4]]=>1
[[1,2,4,4],[2,4]]=>2
[[1,2,3,3],[3,4]]=>2
[[1,2,3,4],[3,3]]=>2
[[1,3,3,3],[2,4]]=>1
[[1,2,3,3],[4,4]]=>1
[[1,2,3,4],[3,4]]=>2
[[1,2,4,4],[3,3]]=>2
[[1,3,3,4],[2,4]]=>1
[[1,2,3,4],[4,4]]=>1
[[1,2,4,4],[3,4]]=>3
[[1,3,4,4],[2,4]]=>2
[[1,2,4,4],[4,4]]=>2
[[1,3,3,3],[3,4]]=>2
[[1,3,3,3],[4,4]]=>1
[[1,3,3,4],[3,4]]=>2
[[1,3,3,4],[4,4]]=>1
[[1,3,4,4],[3,4]]=>3
[[1,3,4,4],[4,4]]=>2
[[2,2,2,2],[3,4]]=>2
[[2,2,2,2],[4,4]]=>2
[[2,2,2,3],[3,4]]=>2
[[2,2,2,4],[3,3]]=>2
[[2,2,2,3],[4,4]]=>2
[[2,2,2,4],[3,4]]=>2
[[2,2,2,4],[4,4]]=>2
[[2,2,3,3],[3,4]]=>2
[[2,2,3,4],[3,3]]=>3
[[2,2,3,3],[4,4]]=>2
[[2,2,3,4],[3,4]]=>2
[[2,2,4,4],[3,3]]=>3
[[2,2,3,4],[4,4]]=>2
[[2,2,4,4],[3,4]]=>3
[[2,2,4,4],[4,4]]=>3
[[2,3,3,3],[3,4]]=>3
[[2,3,3,3],[4,4]]=>2
[[2,3,3,4],[3,4]]=>3
[[2,3,3,4],[4,4]]=>2
[[2,3,4,4],[3,4]]=>4
[[2,3,4,4],[4,4]]=>3
[[3,3,3,3],[4,4]]=>2
[[3,3,3,4],[4,4]]=>2
[[3,3,4,4],[4,4]]=>3
[[1,1,1,1],[2],[4]]=>1
[[1,1,1,1],[3],[4]]=>2
[[1,1,1,2],[2],[4]]=>1
[[1,1,1,2],[3],[4]]=>2
[[1,1,1,3],[2],[4]]=>1
[[1,1,1,4],[2],[3]]=>0
[[1,1,1,4],[2],[4]]=>1
[[1,1,1,3],[3],[4]]=>2
[[1,1,1,4],[3],[4]]=>2
[[1,1,2,2],[2],[4]]=>1
[[1,1,2,2],[3],[4]]=>2
[[1,1,2,3],[2],[4]]=>1
[[1,1,2,4],[2],[3]]=>0
[[1,1,2,4],[2],[4]]=>1
[[1,1,2,3],[3],[4]]=>2
[[1,1,3,3],[2],[4]]=>1
[[1,1,3,4],[2],[3]]=>0
[[1,1,2,4],[3],[4]]=>2
[[1,1,3,4],[2],[4]]=>1
[[1,1,4,4],[2],[3]]=>0
[[1,1,4,4],[2],[4]]=>1
[[1,1,3,3],[3],[4]]=>2
[[1,1,3,4],[3],[4]]=>2
[[1,1,4,4],[3],[4]]=>2
[[1,2,2,2],[2],[4]]=>2
[[1,2,2,2],[3],[4]]=>2
[[1,2,2,3],[2],[4]]=>2
[[1,2,2,4],[2],[3]]=>1
[[1,2,2,4],[2],[4]]=>2
[[1,2,2,3],[3],[4]]=>2
[[1,2,3,3],[2],[4]]=>2
[[1,2,3,4],[2],[3]]=>1
[[1,2,2,4],[3],[4]]=>2
[[1,2,3,4],[2],[4]]=>2
[[1,2,4,4],[2],[3]]=>1
[[1,2,4,4],[2],[4]]=>2
[[1,2,3,3],[3],[4]]=>2
[[1,3,3,3],[2],[4]]=>2
[[1,3,3,4],[2],[3]]=>1
[[1,2,3,4],[3],[4]]=>2
[[1,3,3,4],[2],[4]]=>2
[[1,3,4,4],[2],[3]]=>1
[[1,2,4,4],[3],[4]]=>2
[[1,3,4,4],[2],[4]]=>2
[[1,4,4,4],[2],[3]]=>1
[[1,4,4,4],[2],[4]]=>2
[[1,3,3,3],[3],[4]]=>3
[[1,3,3,4],[3],[4]]=>3
[[1,3,4,4],[3],[4]]=>3
[[1,4,4,4],[3],[4]]=>3
[[2,2,2,2],[3],[4]]=>3
[[2,2,2,3],[3],[4]]=>3
[[2,2,2,4],[3],[4]]=>3
[[2,2,3,3],[3],[4]]=>3
[[2,2,3,4],[3],[4]]=>3
[[2,2,4,4],[3],[4]]=>3
[[2,3,3,3],[3],[4]]=>4
[[2,3,3,4],[3],[4]]=>4
[[2,3,4,4],[3],[4]]=>4
[[2,4,4,4],[3],[4]]=>4
[[1,1,1],[2,2,4]]=>0
[[1,1,1],[2,3,4]]=>0
[[1,1,1],[2,4,4]]=>0
[[1,1,1],[3,3,4]]=>1
[[1,1,1],[3,4,4]]=>1
[[1,1,1],[4,4,4]]=>1
[[1,1,2],[2,2,4]]=>1
[[1,1,2],[2,3,4]]=>1
[[1,1,3],[2,2,4]]=>1
[[1,1,2],[2,4,4]]=>0
[[1,1,2],[3,3,4]]=>2
[[1,1,3],[2,3,4]]=>1
[[1,1,2],[3,4,4]]=>1
[[1,1,3],[2,4,4]]=>0
[[1,1,2],[4,4,4]]=>1
[[1,1,3],[3,3,4]]=>2
[[1,1,3],[3,4,4]]=>1
[[1,1,3],[4,4,4]]=>1
[[1,2,2],[2,3,4]]=>1
[[1,2,2],[2,4,4]]=>1
[[1,2,2],[3,3,4]]=>1
[[1,2,3],[2,3,4]]=>2
[[1,2,2],[3,4,4]]=>2
[[1,2,3],[2,4,4]]=>1
[[1,2,2],[4,4,4]]=>1
[[1,2,3],[3,3,4]]=>2
[[1,2,3],[3,4,4]]=>2
[[1,3,3],[2,4,4]]=>1
[[1,2,3],[4,4,4]]=>1
[[1,3,3],[3,4,4]]=>2
[[1,3,3],[4,4,4]]=>1
[[2,2,2],[3,3,4]]=>2
[[2,2,2],[3,4,4]]=>2
[[2,2,2],[4,4,4]]=>2
[[2,2,3],[3,3,4]]=>3
[[2,2,3],[3,4,4]]=>2
[[2,2,3],[4,4,4]]=>2
[[2,3,3],[3,4,4]]=>3
[[2,3,3],[4,4,4]]=>2
[[3,3,3],[4,4,4]]=>2
[[1,1,1],[2,2],[4]]=>1
[[1,1,1],[2,3],[4]]=>1
[[1,1,1],[2,4],[3]]=>1
[[1,1,1],[2,4],[4]]=>2
[[1,1,1],[3,3],[4]]=>2
[[1,1,1],[3,4],[4]]=>3
[[1,1,2],[2,2],[4]]=>2
[[1,1,2],[2,3],[4]]=>1
[[1,1,2],[2,4],[3]]=>1
[[1,1,3],[2,2],[4]]=>2
[[1,1,4],[2,2],[3]]=>1
[[1,1,2],[2,4],[4]]=>2
[[1,1,4],[2,2],[4]]=>2
[[1,1,2],[3,3],[4]]=>2
[[1,1,3],[2,3],[4]]=>2
[[1,1,3],[2,4],[3]]=>1
[[1,1,4],[2,3],[3]]=>2
[[1,1,2],[3,4],[4]]=>3
[[1,1,3],[2,4],[4]]=>2
[[1,1,4],[2,3],[4]]=>2
[[1,1,4],[2,4],[3]]=>2
[[1,1,4],[2,4],[4]]=>3
[[1,1,3],[3,3],[4]]=>3
[[1,1,3],[3,4],[4]]=>3
[[1,1,4],[3,3],[4]]=>3
[[1,1,4],[3,4],[4]]=>4
[[1,2,2],[2,3],[4]]=>2
[[1,2,2],[2,4],[3]]=>2
[[1,2,2],[2,4],[4]]=>3
[[1,2,2],[3,3],[4]]=>2
[[1,2,3],[2,3],[4]]=>3
[[1,2,3],[2,4],[3]]=>2
[[1,2,4],[2,3],[3]]=>3
[[1,2,2],[3,4],[4]]=>4
[[1,2,3],[2,4],[4]]=>3
[[1,2,4],[2,3],[4]]=>3
[[1,2,4],[2,4],[3]]=>3
[[1,2,4],[2,4],[4]]=>4
[[1,2,3],[3,3],[4]]=>3
[[1,3,3],[2,4],[3]]=>2
[[1,2,3],[3,4],[4]]=>4
[[1,2,4],[3,3],[4]]=>3
[[1,3,3],[2,4],[4]]=>3
[[1,3,4],[2,4],[3]]=>3
[[1,2,4],[3,4],[4]]=>5
[[1,3,4],[2,4],[4]]=>4
[[1,3,3],[3,4],[4]]=>4
[[1,3,4],[3,4],[4]]=>5
[[2,2,2],[3,3],[4]]=>3
[[2,2,2],[3,4],[4]]=>4
[[2,2,3],[3,3],[4]]=>4
[[2,2,3],[3,4],[4]]=>4
[[2,2,4],[3,3],[4]]=>4
[[2,2,4],[3,4],[4]]=>5
[[2,3,3],[3,4],[4]]=>5
[[2,3,4],[3,4],[4]]=>6
[[1,1,1],[2],[3],[4]]=>0
[[1,1,2],[2],[3],[4]]=>0
[[1,1,3],[2],[3],[4]]=>0
[[1,1,4],[2],[3],[4]]=>0
[[1,2,2],[2],[3],[4]]=>1
[[1,2,3],[2],[3],[4]]=>1
[[1,2,4],[2],[3],[4]]=>1
[[1,3,3],[2],[3],[4]]=>1
[[1,3,4],[2],[3],[4]]=>1
[[1,4,4],[2],[3],[4]]=>1
[[1,1],[2,2],[3,4]]=>0
[[1,1],[2,2],[4,4]]=>1
[[1,1],[2,3],[3,4]]=>1
[[1,1],[2,3],[4,4]]=>1
[[1,1],[3,3],[4,4]]=>2
[[1,2],[2,3],[3,4]]=>2
[[1,2],[2,3],[4,4]]=>2
[[1,2],[3,3],[4,4]]=>2
[[2,2],[3,3],[4,4]]=>3
[[1,1],[2,2],[3],[4]]=>0
[[1,1],[2,3],[3],[4]]=>1
[[1,1],[2,4],[3],[4]]=>1
[[1,2],[2,3],[3],[4]]=>2
[[1,2],[2,4],[3],[4]]=>2
[[1,3],[2,4],[3],[4]]=>2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The flush statistic of a semistandard tableau.
Let $T$ be a tableaux with $r$ rows such that each row is longer than the row beneath it by at least one box. Let $1 \leq i < k \leq r+1$ and suppose $l$ is the smallest integer greater than $k$ such that there exists an $l$-segment in the $(i+1)$-st row of $T$. A $k$-segment in the $i$-th row of $T$ is called flush if the leftmost box in the $k$-segment and the leftmost box of the $l$-segment are in the same column of $T$. If, however, no such $l$ exists, then this $k$-segment is said to be flush if the number of boxes in the $k$-segment is equal to difference of the number of boxes between the $i$-th row and $(i+1)$-st row. The flush statistic is given by the number of $k$-segments in $T$.
Let $T$ be a tableaux with $r$ rows such that each row is longer than the row beneath it by at least one box. Let $1 \leq i < k \leq r+1$ and suppose $l$ is the smallest integer greater than $k$ such that there exists an $l$-segment in the $(i+1)$-st row of $T$. A $k$-segment in the $i$-th row of $T$ is called flush if the leftmost box in the $k$-segment and the leftmost box of the $l$-segment are in the same column of $T$. If, however, no such $l$ exists, then this $k$-segment is said to be flush if the number of boxes in the $k$-segment is equal to difference of the number of boxes between the $i$-th row and $(i+1)$-st row. The flush statistic is given by the number of $k$-segments in $T$.
References
[1] Salisbury, B. The flush statistic on semistandard Young tableaux arXiv:1401.1185
Code
def statistic(T): f = 0 segments = {} for r in range(len(T)): for c in range(len(T[r])): for j in range(c+1): if T[r][j] != r+1: if (r,T[r][j]) not in segments.keys(): segments[(r,T[r][j])] = j L = segments.items() for s in segments.iteritems(): if s[0][0] != len(T)-1 and s[1] == len(T[s[0][0]+1]) and T[s[0][0]+1][-1] <= s[0][1]: f += 1 if s[0][0] == len(T)-1 and s[1] == 0: f += 1 else: for t in L: if s[0][0]+1 == t[0][0] and s[1] == t[1]: if s[1] >= 1 and T[s[0][0]+1][s[1]] != T[s[0][0]+1][s[1]-1]: f += 1 if s[1] < 1 and T[s[0][0]+1][s[1]] != s[0][0]+2: f += 1 return f
Created
Jan 15, 2014 at 19:13 by Ben Salisbury
Updated
Oct 19, 2015 at 16:34 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!