Your data matches 10 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000174
St000174: Semistandard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> 0
[[2,2]]
=> 1
[[1],[2]]
=> 0
[[1,3]]
=> 0
[[2,3]]
=> 1
[[3,3]]
=> 1
[[1],[3]]
=> 1
[[2],[3]]
=> 2
[[1,1,2]]
=> 0
[[1,2,2]]
=> 0
[[2,2,2]]
=> 1
[[1,1],[2]]
=> 0
[[1,2],[2]]
=> 1
[[1,4]]
=> 0
[[2,4]]
=> 1
[[3,4]]
=> 1
[[4,4]]
=> 1
[[1],[4]]
=> 1
[[2],[4]]
=> 2
[[3],[4]]
=> 2
[[1,1,3]]
=> 0
[[1,2,3]]
=> 0
[[1,3,3]]
=> 0
[[2,2,3]]
=> 1
[[2,3,3]]
=> 1
[[3,3,3]]
=> 1
[[1,1],[3]]
=> 1
[[1,2],[3]]
=> 1
[[1,3],[2]]
=> 1
[[1,3],[3]]
=> 2
[[2,2],[3]]
=> 2
[[2,3],[3]]
=> 3
[[1],[2],[3]]
=> 0
[[1,1,1,2]]
=> 0
[[1,1,2,2]]
=> 0
[[1,2,2,2]]
=> 0
[[2,2,2,2]]
=> 1
[[1,1,1],[2]]
=> 0
[[1,1,2],[2]]
=> 0
[[1,2,2],[2]]
=> 1
[[1,1],[2,2]]
=> 0
[[1,1,4]]
=> 0
[[1,2,4]]
=> 0
[[1,3,4]]
=> 0
[[1,4,4]]
=> 0
[[2,2,4]]
=> 1
[[2,3,4]]
=> 1
[[2,4,4]]
=> 1
[[3,3,4]]
=> 1
[[3,4,4]]
=> 1
Description
The flush statistic of a semistandard tableau. Let $T$ be a tableaux with $r$ rows such that each row is longer than the row beneath it by at least one box. Let $1 \leq i < k \leq r+1$ and suppose $l$ is the smallest integer greater than $k$ such that there exists an $l$-segment in the $(i+1)$-st row of $T$. A $k$-segment in the $i$-th row of $T$ is called '''flush''' if the leftmost box in the $k$-segment and the leftmost box of the $l$-segment are in the same column of $T$. If, however, no such $l$ exists, then this $k$-segment is said to be flush if the number of boxes in the $k$-segment is equal to difference of the number of boxes between the $i$-th row and $(i+1)$-st row. The flush statistic is given by the number of $k$-segments in $T$.
Mp00214: Semistandard tableaux subcrystalPosets
Mp00198: Posets incomparability graphGraphs
St000259: Graphs ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 14%
Values
[[1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 1
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 1
[[1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 2
[[1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1
[[1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0
[[2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 1
[[3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 1
[[4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 1
[[1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 2
[[3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 2
[[1,1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0
[[1,2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 0
[[1,3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 0
[[2,2,3]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 1
[[2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 1
[[3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 1
[[1,1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1
[[1,2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2
[[2,2],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2
[[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 3
[[1],[2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0
[[1,2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0
[[1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 0
[[1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 0
[[2,2,4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 1
[[2,3,4]]
=> ([(0,6),(1,9),(1,10),(2,8),(3,7),(4,3),(4,12),(5,2),(5,12),(6,4),(6,5),(7,9),(7,11),(8,10),(8,11),(9,13),(10,13),(11,13),(12,1),(12,7),(12,8)],14)
=> ([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 1
[[2,4,4]]
=> ([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> ([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> ? = 1
[[3,3,4]]
=> ([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> ([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> ? = 1
[[3,4,4]]
=> ([(0,1),(1,4),(1,5),(2,14),(3,13),(4,6),(4,17),(5,7),(5,17),(6,15),(7,16),(8,11),(8,12),(10,18),(11,3),(11,18),(12,2),(12,18),(13,9),(14,9),(15,10),(15,11),(16,10),(16,12),(17,8),(17,15),(17,16),(18,13),(18,14)],19)
=> ([(3,4),(3,16),(4,15),(5,6),(5,17),(6,18),(7,17),(7,18),(8,15),(8,16),(9,12),(9,13),(9,14),(9,15),(9,16),(10,11),(10,13),(10,14),(10,15),(10,18),(11,12),(11,14),(11,16),(11,17),(12,13),(12,15),(12,18),(13,16),(13,17),(14,17),(14,18),(15,16),(15,17),(16,18),(17,18)],19)
=> ? = 1
[[4,4,4]]
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ([(4,5),(4,17),(5,16),(6,7),(6,18),(7,19),(8,18),(8,19),(9,16),(9,17),(10,13),(10,14),(10,15),(10,16),(10,17),(11,12),(11,14),(11,15),(11,16),(11,19),(12,13),(12,15),(12,17),(12,18),(13,14),(13,16),(13,19),(14,17),(14,18),(15,18),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1
[[1,1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1,2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 1
[[1,4],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1
[[1,3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 1
[[1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 0
[[1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1],[2,2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2,2,2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2,2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1],[2,2],[3,3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 0
[[1,1],[2,2],[3],[4]]
=> ([],1)
=> ([],1)
=> 0
[[1]]
=> ([],1)
=> ([],1)
=> 0
[[1,1]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1,1]]
=> ([],1)
=> ([],1)
=> 0
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Mp00214: Semistandard tableaux subcrystalPosets
Mp00198: Posets incomparability graphGraphs
St000260: Graphs ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 14%
Values
[[1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 1
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 1
[[1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 2
[[1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1
[[1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0
[[2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 1
[[3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 1
[[4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 1
[[1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 2
[[3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 2
[[1,1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0
[[1,2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 0
[[1,3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 0
[[2,2,3]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 1
[[2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 1
[[3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 1
[[1,1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1
[[1,2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2
[[2,2],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2
[[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 3
[[1],[2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0
[[1,2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0
[[1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 0
[[1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 0
[[2,2,4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 1
[[2,3,4]]
=> ([(0,6),(1,9),(1,10),(2,8),(3,7),(4,3),(4,12),(5,2),(5,12),(6,4),(6,5),(7,9),(7,11),(8,10),(8,11),(9,13),(10,13),(11,13),(12,1),(12,7),(12,8)],14)
=> ([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 1
[[2,4,4]]
=> ([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> ([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> ? = 1
[[3,3,4]]
=> ([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> ([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> ? = 1
[[3,4,4]]
=> ([(0,1),(1,4),(1,5),(2,14),(3,13),(4,6),(4,17),(5,7),(5,17),(6,15),(7,16),(8,11),(8,12),(10,18),(11,3),(11,18),(12,2),(12,18),(13,9),(14,9),(15,10),(15,11),(16,10),(16,12),(17,8),(17,15),(17,16),(18,13),(18,14)],19)
=> ([(3,4),(3,16),(4,15),(5,6),(5,17),(6,18),(7,17),(7,18),(8,15),(8,16),(9,12),(9,13),(9,14),(9,15),(9,16),(10,11),(10,13),(10,14),(10,15),(10,18),(11,12),(11,14),(11,16),(11,17),(12,13),(12,15),(12,18),(13,16),(13,17),(14,17),(14,18),(15,16),(15,17),(16,18),(17,18)],19)
=> ? = 1
[[4,4,4]]
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ([(4,5),(4,17),(5,16),(6,7),(6,18),(7,19),(8,18),(8,19),(9,16),(9,17),(10,13),(10,14),(10,15),(10,16),(10,17),(11,12),(11,14),(11,15),(11,16),(11,19),(12,13),(12,15),(12,17),(12,18),(13,14),(13,16),(13,19),(14,17),(14,18),(15,18),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1
[[1,1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1,2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 1
[[1,4],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1
[[1,3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 1
[[1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 0
[[1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1],[2,2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2,2,2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2,2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1],[2,2],[3,3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 0
[[1,1],[2,2],[3],[4]]
=> ([],1)
=> ([],1)
=> 0
[[1]]
=> ([],1)
=> ([],1)
=> 0
[[1,1]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1,1]]
=> ([],1)
=> ([],1)
=> 0
Description
The radius of a connected graph. This is the minimum eccentricity of any vertex.
Mp00214: Semistandard tableaux subcrystalPosets
Mp00198: Posets incomparability graphGraphs
St000302: Graphs ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 14%
Values
[[1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 1
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 1
[[1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 2
[[1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1
[[1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0
[[2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 1
[[3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 1
[[4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 1
[[1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 2
[[3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 2
[[1,1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0
[[1,2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 0
[[1,3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 0
[[2,2,3]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 1
[[2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 1
[[3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 1
[[1,1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1
[[1,2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2
[[2,2],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2
[[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 3
[[1],[2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0
[[1,2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0
[[1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 0
[[1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 0
[[2,2,4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 1
[[2,3,4]]
=> ([(0,6),(1,9),(1,10),(2,8),(3,7),(4,3),(4,12),(5,2),(5,12),(6,4),(6,5),(7,9),(7,11),(8,10),(8,11),(9,13),(10,13),(11,13),(12,1),(12,7),(12,8)],14)
=> ([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 1
[[2,4,4]]
=> ([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> ([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> ? = 1
[[3,3,4]]
=> ([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> ([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> ? = 1
[[3,4,4]]
=> ([(0,1),(1,4),(1,5),(2,14),(3,13),(4,6),(4,17),(5,7),(5,17),(6,15),(7,16),(8,11),(8,12),(10,18),(11,3),(11,18),(12,2),(12,18),(13,9),(14,9),(15,10),(15,11),(16,10),(16,12),(17,8),(17,15),(17,16),(18,13),(18,14)],19)
=> ([(3,4),(3,16),(4,15),(5,6),(5,17),(6,18),(7,17),(7,18),(8,15),(8,16),(9,12),(9,13),(9,14),(9,15),(9,16),(10,11),(10,13),(10,14),(10,15),(10,18),(11,12),(11,14),(11,16),(11,17),(12,13),(12,15),(12,18),(13,16),(13,17),(14,17),(14,18),(15,16),(15,17),(16,18),(17,18)],19)
=> ? = 1
[[4,4,4]]
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ([(4,5),(4,17),(5,16),(6,7),(6,18),(7,19),(8,18),(8,19),(9,16),(9,17),(10,13),(10,14),(10,15),(10,16),(10,17),(11,12),(11,14),(11,15),(11,16),(11,19),(12,13),(12,15),(12,17),(12,18),(13,14),(13,16),(13,19),(14,17),(14,18),(15,18),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1
[[1,1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1,2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 1
[[1,4],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1
[[1,3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 1
[[1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 0
[[1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1],[2,2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2,2,2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2,2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1],[2,2],[3,3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 0
[[1,1],[2,2],[3],[4]]
=> ([],1)
=> ([],1)
=> 0
[[1]]
=> ([],1)
=> ([],1)
=> 0
[[1,1]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1,1]]
=> ([],1)
=> ([],1)
=> 0
Description
The determinant of the distance matrix of a connected graph.
Mp00214: Semistandard tableaux subcrystalPosets
Mp00198: Posets incomparability graphGraphs
St000466: Graphs ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 14%
Values
[[1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 1
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 1
[[1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 2
[[1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1
[[1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0
[[2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 1
[[3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 1
[[4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 1
[[1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 2
[[3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 2
[[1,1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0
[[1,2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 0
[[1,3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 0
[[2,2,3]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 1
[[2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 1
[[3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 1
[[1,1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1
[[1,2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2
[[2,2],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2
[[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 3
[[1],[2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0
[[1,2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0
[[1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 0
[[1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 0
[[2,2,4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 1
[[2,3,4]]
=> ([(0,6),(1,9),(1,10),(2,8),(3,7),(4,3),(4,12),(5,2),(5,12),(6,4),(6,5),(7,9),(7,11),(8,10),(8,11),(9,13),(10,13),(11,13),(12,1),(12,7),(12,8)],14)
=> ([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 1
[[2,4,4]]
=> ([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> ([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> ? = 1
[[3,3,4]]
=> ([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> ([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> ? = 1
[[3,4,4]]
=> ([(0,1),(1,4),(1,5),(2,14),(3,13),(4,6),(4,17),(5,7),(5,17),(6,15),(7,16),(8,11),(8,12),(10,18),(11,3),(11,18),(12,2),(12,18),(13,9),(14,9),(15,10),(15,11),(16,10),(16,12),(17,8),(17,15),(17,16),(18,13),(18,14)],19)
=> ([(3,4),(3,16),(4,15),(5,6),(5,17),(6,18),(7,17),(7,18),(8,15),(8,16),(9,12),(9,13),(9,14),(9,15),(9,16),(10,11),(10,13),(10,14),(10,15),(10,18),(11,12),(11,14),(11,16),(11,17),(12,13),(12,15),(12,18),(13,16),(13,17),(14,17),(14,18),(15,16),(15,17),(16,18),(17,18)],19)
=> ? = 1
[[4,4,4]]
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ([(4,5),(4,17),(5,16),(6,7),(6,18),(7,19),(8,18),(8,19),(9,16),(9,17),(10,13),(10,14),(10,15),(10,16),(10,17),(11,12),(11,14),(11,15),(11,16),(11,19),(12,13),(12,15),(12,17),(12,18),(13,14),(13,16),(13,19),(14,17),(14,18),(15,18),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1
[[1,1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1,2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 1
[[1,4],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1
[[1,3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 1
[[1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 0
[[1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1],[2,2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2,2,2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2,2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1],[2,2],[3,3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 0
[[1,1],[2,2],[3],[4]]
=> ([],1)
=> ([],1)
=> 0
[[1]]
=> ([],1)
=> ([],1)
=> 0
[[1,1]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1,1]]
=> ([],1)
=> ([],1)
=> 0
Description
The Gutman (or modified Schultz) index of a connected graph. This is $$\sum_{\{u,v\}\subseteq V} d(u)d(v)d(u,v)$$ where $d(u)$ is the degree of vertex $u$ and $d(u,v)$ is the distance between vertices $u$ and $v$. For trees on $n$ vertices, the modified Schultz index is related to the Wiener index via $S^\ast(T)=4W(T)-(n-1)(2n-1)$ [1].
Mp00214: Semistandard tableaux subcrystalPosets
Mp00198: Posets incomparability graphGraphs
St000467: Graphs ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 14%
Values
[[1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 1
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 1
[[1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 2
[[1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1
[[1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0
[[2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 1
[[3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 1
[[4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 1
[[1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 2
[[3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 2
[[1,1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0
[[1,2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 0
[[1,3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 0
[[2,2,3]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 1
[[2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 1
[[3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 1
[[1,1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1
[[1,2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2
[[2,2],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2
[[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 3
[[1],[2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0
[[1,2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0
[[1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 0
[[1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 0
[[2,2,4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 1
[[2,3,4]]
=> ([(0,6),(1,9),(1,10),(2,8),(3,7),(4,3),(4,12),(5,2),(5,12),(6,4),(6,5),(7,9),(7,11),(8,10),(8,11),(9,13),(10,13),(11,13),(12,1),(12,7),(12,8)],14)
=> ([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 1
[[2,4,4]]
=> ([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> ([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> ? = 1
[[3,3,4]]
=> ([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> ([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> ? = 1
[[3,4,4]]
=> ([(0,1),(1,4),(1,5),(2,14),(3,13),(4,6),(4,17),(5,7),(5,17),(6,15),(7,16),(8,11),(8,12),(10,18),(11,3),(11,18),(12,2),(12,18),(13,9),(14,9),(15,10),(15,11),(16,10),(16,12),(17,8),(17,15),(17,16),(18,13),(18,14)],19)
=> ([(3,4),(3,16),(4,15),(5,6),(5,17),(6,18),(7,17),(7,18),(8,15),(8,16),(9,12),(9,13),(9,14),(9,15),(9,16),(10,11),(10,13),(10,14),(10,15),(10,18),(11,12),(11,14),(11,16),(11,17),(12,13),(12,15),(12,18),(13,16),(13,17),(14,17),(14,18),(15,16),(15,17),(16,18),(17,18)],19)
=> ? = 1
[[4,4,4]]
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ([(4,5),(4,17),(5,16),(6,7),(6,18),(7,19),(8,18),(8,19),(9,16),(9,17),(10,13),(10,14),(10,15),(10,16),(10,17),(11,12),(11,14),(11,15),(11,16),(11,19),(12,13),(12,15),(12,17),(12,18),(13,14),(13,16),(13,19),(14,17),(14,18),(15,18),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1
[[1,1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[[1,2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 1
[[1,4],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1
[[1,3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 1
[[1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 0
[[1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1],[2,2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2,2,2]]
=> ([],1)
=> ([],1)
=> 0
[[1,1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2,2],[3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1],[2,2],[3,3]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 0
[[1,1],[2,2],[3],[4]]
=> ([],1)
=> ([],1)
=> 0
[[1]]
=> ([],1)
=> ([],1)
=> 0
[[1,1]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1]]
=> ([],1)
=> ([],1)
=> 0
[[1,1,1,1,1]]
=> ([],1)
=> ([],1)
=> 0
Description
The hyper-Wiener index of a connected graph. This is $$ \sum_{\{u,v\}\subseteq V} d(u,v)+d(u,v)^2. $$
Mp00214: Semistandard tableaux subcrystalPosets
Mp00198: Posets incomparability graphGraphs
St000771: Graphs ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 14%
Values
[[1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0 + 1
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[1],[2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0 + 1
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 1 + 1
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 1 + 1
[[1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 + 1
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 2 + 1
[[1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0 + 1
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0 + 1
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 + 1
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 + 1
[[1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0 + 1
[[2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 1 + 1
[[3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 1 + 1
[[4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 1 + 1
[[1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 2 + 1
[[3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 2 + 1
[[1,1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0 + 1
[[1,2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 0 + 1
[[1,3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 0 + 1
[[2,2,3]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 1 + 1
[[2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 1 + 1
[[3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 1 + 1
[[1,1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 + 1
[[1,2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[1,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[1,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2 + 1
[[2,2],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2 + 1
[[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 3 + 1
[[1],[2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0 + 1
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0 + 1
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0 + 1
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 + 1
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0 + 1
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0 + 1
[[1,2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0 + 1
[[1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 0 + 1
[[1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 0 + 1
[[2,2,4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 1 + 1
[[2,3,4]]
=> ([(0,6),(1,9),(1,10),(2,8),(3,7),(4,3),(4,12),(5,2),(5,12),(6,4),(6,5),(7,9),(7,11),(8,10),(8,11),(9,13),(10,13),(11,13),(12,1),(12,7),(12,8)],14)
=> ([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 1 + 1
[[2,4,4]]
=> ([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> ([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> ? = 1 + 1
[[3,3,4]]
=> ([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> ([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> ? = 1 + 1
[[3,4,4]]
=> ([(0,1),(1,4),(1,5),(2,14),(3,13),(4,6),(4,17),(5,7),(5,17),(6,15),(7,16),(8,11),(8,12),(10,18),(11,3),(11,18),(12,2),(12,18),(13,9),(14,9),(15,10),(15,11),(16,10),(16,12),(17,8),(17,15),(17,16),(18,13),(18,14)],19)
=> ([(3,4),(3,16),(4,15),(5,6),(5,17),(6,18),(7,17),(7,18),(8,15),(8,16),(9,12),(9,13),(9,14),(9,15),(9,16),(10,11),(10,13),(10,14),(10,15),(10,18),(11,12),(11,14),(11,16),(11,17),(12,13),(12,15),(12,18),(13,16),(13,17),(14,17),(14,18),(15,16),(15,17),(16,18),(17,18)],19)
=> ? = 1 + 1
[[4,4,4]]
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ([(4,5),(4,17),(5,16),(6,7),(6,18),(7,19),(8,18),(8,19),(9,16),(9,17),(10,13),(10,14),(10,15),(10,16),(10,17),(11,12),(11,14),(11,15),(11,16),(11,19),(12,13),(12,15),(12,17),(12,18),(13,14),(13,16),(13,19),(14,17),(14,18),(15,18),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1 + 1
[[1,1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[1,2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 1 + 1
[[1,4],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 + 1
[[1,3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 1 + 1
[[1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1],[2,2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1],[2,2,2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1],[2,2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1],[2,2],[3,3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1],[2,2],[3],[4]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1,1]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $2$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Mp00214: Semistandard tableaux subcrystalPosets
Mp00198: Posets incomparability graphGraphs
St000772: Graphs ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 14%
Values
[[1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0 + 1
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[1],[2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0 + 1
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 1 + 1
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 1 + 1
[[1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 + 1
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 2 + 1
[[1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0 + 1
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0 + 1
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 + 1
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 + 1
[[1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0 + 1
[[2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 1 + 1
[[3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 1 + 1
[[4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 1 + 1
[[1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 2 + 1
[[3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 2 + 1
[[1,1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0 + 1
[[1,2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 0 + 1
[[1,3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 0 + 1
[[2,2,3]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 1 + 1
[[2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 1 + 1
[[3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 1 + 1
[[1,1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 + 1
[[1,2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[1,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[1,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2 + 1
[[2,2],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2 + 1
[[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 3 + 1
[[1],[2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0 + 1
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0 + 1
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0 + 1
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 + 1
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0 + 1
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0 + 1
[[1,2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0 + 1
[[1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 0 + 1
[[1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 0 + 1
[[2,2,4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 1 + 1
[[2,3,4]]
=> ([(0,6),(1,9),(1,10),(2,8),(3,7),(4,3),(4,12),(5,2),(5,12),(6,4),(6,5),(7,9),(7,11),(8,10),(8,11),(9,13),(10,13),(11,13),(12,1),(12,7),(12,8)],14)
=> ([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 1 + 1
[[2,4,4]]
=> ([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> ([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> ? = 1 + 1
[[3,3,4]]
=> ([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> ([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> ? = 1 + 1
[[3,4,4]]
=> ([(0,1),(1,4),(1,5),(2,14),(3,13),(4,6),(4,17),(5,7),(5,17),(6,15),(7,16),(8,11),(8,12),(10,18),(11,3),(11,18),(12,2),(12,18),(13,9),(14,9),(15,10),(15,11),(16,10),(16,12),(17,8),(17,15),(17,16),(18,13),(18,14)],19)
=> ([(3,4),(3,16),(4,15),(5,6),(5,17),(6,18),(7,17),(7,18),(8,15),(8,16),(9,12),(9,13),(9,14),(9,15),(9,16),(10,11),(10,13),(10,14),(10,15),(10,18),(11,12),(11,14),(11,16),(11,17),(12,13),(12,15),(12,18),(13,16),(13,17),(14,17),(14,18),(15,16),(15,17),(16,18),(17,18)],19)
=> ? = 1 + 1
[[4,4,4]]
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ([(4,5),(4,17),(5,16),(6,7),(6,18),(7,19),(8,18),(8,19),(9,16),(9,17),(10,13),(10,14),(10,15),(10,16),(10,17),(11,12),(11,14),(11,15),(11,16),(11,19),(12,13),(12,15),(12,17),(12,18),(13,14),(13,16),(13,19),(14,17),(14,18),(15,18),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1 + 1
[[1,1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[1,2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 1 + 1
[[1,4],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 + 1
[[1,3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 1 + 1
[[1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1],[2,2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1],[2,2,2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1],[2,2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1],[2,2],[3,3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1],[2,2],[3],[4]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1,1]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $1$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$. The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Mp00214: Semistandard tableaux subcrystalPosets
Mp00198: Posets incomparability graphGraphs
St000777: Graphs ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 14%
Values
[[1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0 + 1
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[1],[2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0 + 1
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 1 + 1
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 1 + 1
[[1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 + 1
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 2 + 1
[[1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0 + 1
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0 + 1
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 + 1
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 + 1
[[1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0 + 1
[[2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 1 + 1
[[3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 1 + 1
[[4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 1 + 1
[[1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 2 + 1
[[3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 2 + 1
[[1,1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0 + 1
[[1,2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 0 + 1
[[1,3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 0 + 1
[[2,2,3]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 1 + 1
[[2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 1 + 1
[[3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 1 + 1
[[1,1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 + 1
[[1,2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[1,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[1,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2 + 1
[[2,2],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2 + 1
[[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 3 + 1
[[1],[2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0 + 1
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0 + 1
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0 + 1
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 + 1
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0 + 1
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0 + 1
[[1,2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0 + 1
[[1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 0 + 1
[[1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 0 + 1
[[2,2,4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 1 + 1
[[2,3,4]]
=> ([(0,6),(1,9),(1,10),(2,8),(3,7),(4,3),(4,12),(5,2),(5,12),(6,4),(6,5),(7,9),(7,11),(8,10),(8,11),(9,13),(10,13),(11,13),(12,1),(12,7),(12,8)],14)
=> ([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 1 + 1
[[2,4,4]]
=> ([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> ([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> ? = 1 + 1
[[3,3,4]]
=> ([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> ([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> ? = 1 + 1
[[3,4,4]]
=> ([(0,1),(1,4),(1,5),(2,14),(3,13),(4,6),(4,17),(5,7),(5,17),(6,15),(7,16),(8,11),(8,12),(10,18),(11,3),(11,18),(12,2),(12,18),(13,9),(14,9),(15,10),(15,11),(16,10),(16,12),(17,8),(17,15),(17,16),(18,13),(18,14)],19)
=> ([(3,4),(3,16),(4,15),(5,6),(5,17),(6,18),(7,17),(7,18),(8,15),(8,16),(9,12),(9,13),(9,14),(9,15),(9,16),(10,11),(10,13),(10,14),(10,15),(10,18),(11,12),(11,14),(11,16),(11,17),(12,13),(12,15),(12,18),(13,16),(13,17),(14,17),(14,18),(15,16),(15,17),(16,18),(17,18)],19)
=> ? = 1 + 1
[[4,4,4]]
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ([(4,5),(4,17),(5,16),(6,7),(6,18),(7,19),(8,18),(8,19),(9,16),(9,17),(10,13),(10,14),(10,15),(10,16),(10,17),(11,12),(11,14),(11,15),(11,16),(11,19),(12,13),(12,15),(12,17),(12,18),(13,14),(13,16),(13,19),(14,17),(14,18),(15,18),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1 + 1
[[1,1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[1,2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 1 + 1
[[1,4],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 + 1
[[1,3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 1 + 1
[[1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1],[2,2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1],[2,2,2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1],[2,2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1],[2,2],[3,3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1],[2,2],[3],[4]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1,1]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Mp00214: Semistandard tableaux subcrystalPosets
Mp00198: Posets incomparability graphGraphs
St001645: Graphs ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 14%
Values
[[1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0 + 1
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[1],[2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0 + 1
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 1 + 1
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 1 + 1
[[1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 + 1
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 2 + 1
[[1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0 + 1
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0 + 1
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 + 1
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 + 1
[[1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0 + 1
[[2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 1 + 1
[[3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 1 + 1
[[4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 1 + 1
[[1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 2 + 1
[[3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 2 + 1
[[1,1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0 + 1
[[1,2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 0 + 1
[[1,3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 0 + 1
[[2,2,3]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 1 + 1
[[2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 1 + 1
[[3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 1 + 1
[[1,1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 + 1
[[1,2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[1,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[1,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2 + 1
[[2,2],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2 + 1
[[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 3 + 1
[[1],[2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0 + 1
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0 + 1
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0 + 1
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 + 1
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0 + 1
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0 + 1
[[1,2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0 + 1
[[1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 0 + 1
[[1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 0 + 1
[[2,2,4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 1 + 1
[[2,3,4]]
=> ([(0,6),(1,9),(1,10),(2,8),(3,7),(4,3),(4,12),(5,2),(5,12),(6,4),(6,5),(7,9),(7,11),(8,10),(8,11),(9,13),(10,13),(11,13),(12,1),(12,7),(12,8)],14)
=> ([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 1 + 1
[[2,4,4]]
=> ([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> ([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> ? = 1 + 1
[[3,3,4]]
=> ([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> ([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> ? = 1 + 1
[[3,4,4]]
=> ([(0,1),(1,4),(1,5),(2,14),(3,13),(4,6),(4,17),(5,7),(5,17),(6,15),(7,16),(8,11),(8,12),(10,18),(11,3),(11,18),(12,2),(12,18),(13,9),(14,9),(15,10),(15,11),(16,10),(16,12),(17,8),(17,15),(17,16),(18,13),(18,14)],19)
=> ([(3,4),(3,16),(4,15),(5,6),(5,17),(6,18),(7,17),(7,18),(8,15),(8,16),(9,12),(9,13),(9,14),(9,15),(9,16),(10,11),(10,13),(10,14),(10,15),(10,18),(11,12),(11,14),(11,16),(11,17),(12,13),(12,15),(12,18),(13,16),(13,17),(14,17),(14,18),(15,16),(15,17),(16,18),(17,18)],19)
=> ? = 1 + 1
[[4,4,4]]
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ([(4,5),(4,17),(5,16),(6,7),(6,18),(7,19),(8,18),(8,19),(9,16),(9,17),(10,13),(10,14),(10,15),(10,16),(10,17),(11,12),(11,14),(11,15),(11,16),(11,19),(12,13),(12,15),(12,17),(12,18),(13,14),(13,16),(13,19),(14,17),(14,18),(15,18),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1 + 1
[[1,1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[[1,2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 1 + 1
[[1,4],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 + 1
[[1,3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 1 + 1
[[1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1],[2,2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1],[2,2,2]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1],[2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1],[2,2],[3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1],[2,2],[3,3]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1],[2],[3],[4]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1],[2,2],[3],[4]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,1,1,1,1]]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
Description
The pebbling number of a connected graph.