Identifier
-
Mp00231:
Integer compositions
—bounce path⟶
Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
St000203: Binary trees ⟶ ℤ
Values
[1] => [1,0] => [1,0] => [.,.] => 1
[1,1] => [1,0,1,0] => [1,1,0,0] => [.,[.,.]] => 2
[2] => [1,1,0,0] => [1,0,1,0] => [[.,.],.] => 2
[1,1,1] => [1,0,1,0,1,0] => [1,1,0,1,0,0] => [.,[[.,.],.]] => 2
[1,2] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => [[.,[.,.]],.] => 2
[2,1] => [1,1,0,0,1,0] => [1,0,1,1,0,0] => [[.,.],[.,.]] => 3
[3] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => [[[.,.],.],.] => 3
[1,1,1,1] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [.,[[[.,.],.],.]] => 2
[1,1,2] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => [[.,[[.,.],.]],.] => 2
[1,2,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => [[.,[.,.]],[.,.]] => 3
[1,3] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => [[[.,[.,.]],.],.] => 3
[2,1,1] => [1,1,0,0,1,0,1,0] => [1,0,1,1,0,1,0,0] => [[.,.],[[.,.],.]] => 3
[2,2] => [1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => [[[.,.],[.,.]],.] => 3
[3,1] => [1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => [[[.,.],.],[.,.]] => 4
[4] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [[[[.,.],.],.],.] => 4
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [.,[[[[.,.],.],.],.]] => 2
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => [[.,[[[.,.],.],.]],.] => 2
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => [[.,[[.,.],.]],[.,.]] => 3
[1,1,3] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => [[[.,[[.,.],.]],.],.] => 3
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => [[.,[.,.]],[[.,.],.]] => 3
[1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => [[[.,[.,.]],[.,.]],.] => 3
[1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => [[[.,[.,.]],.],[.,.]] => 4
[1,4] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => [[[[.,[.,.]],.],.],.] => 4
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,1,0,1,0,0] => [[.,.],[[[.,.],.],.]] => 3
[2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,0,1,0,0,1,0] => [[[.,.],[[.,.],.]],.] => 3
[2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => [[[.,.],[.,.]],[.,.]] => 4
[2,3] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [[[[.,.],[.,.]],.],.] => 4
[3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,0,1,0,0] => [[[.,.],.],[[.,.],.]] => 4
[3,2] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => [[[[.,.],.],[.,.]],.] => 4
[4,1] => [1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => [[[[.,.],.],.],[.,.]] => 5
[5] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [[[[[.,.],.],.],.],.] => 5
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [.,[[[[[.,.],.],.],.],.]] => 2
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [[.,[[[[.,.],.],.],.]],.] => 2
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => [[.,[[[.,.],.],.]],[.,.]] => 3
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [[[.,[[[.,.],.],.]],.],.] => 3
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => [[.,[[.,.],.]],[[.,.],.]] => 3
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => [[[.,[[.,.],.]],[.,.]],.] => 3
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => [[[.,[[.,.],.]],.],[.,.]] => 4
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [[[[.,[[.,.],.]],.],.],.] => 4
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => [[.,[.,.]],[[[.,.],.],.]] => 3
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => [[[.,[.,.]],[[.,.],.]],.] => 3
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[[.,[.,.]],[.,.]],[.,.]] => 4
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => [[[[.,[.,.]],[.,.]],.],.] => 4
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => [[[.,[.,.]],.],[[.,.],.]] => 4
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => [[[[.,[.,.]],.],[.,.]],.] => 4
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => [[[[.,[.,.]],.],.],[.,.]] => 5
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [[[[[.,[.,.]],.],.],.],.] => 5
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => [[.,.],[[[[.,.],.],.],.]] => 3
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [[[.,.],[[[.,.],.],.]],.] => 3
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,0,1,1,0,1,0,0,1,1,0,0] => [[[.,.],[[.,.],.]],[.,.]] => 4
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [[[[.,.],[[.,.],.]],.],.] => 4
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,1,0,1,0,0] => [[[.,.],[.,.]],[[.,.],.]] => 4
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [[[[.,.],[.,.]],[.,.]],.] => 4
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => [[[[.,.],[.,.]],.],[.,.]] => 5
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [[[[[.,.],[.,.]],.],.],.] => 5
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => [[[.,.],.],[[[.,.],.],.]] => 4
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [[[[.,.],.],[[.,.],.]],.] => 4
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [[[[.,.],.],[.,.]],[.,.]] => 5
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [[[[[.,.],.],[.,.]],.],.] => 5
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => [[[[.,.],.],.],[[.,.],.]] => 5
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [[[[[.,.],.],.],[.,.]],.] => 5
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [[[[[.,.],.],.],.],[.,.]] => 6
[6] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [[[[[[.,.],.],.],.],.],.] => 6
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [.,[[[[[[.,.],.],.],.],.],.]] => 2
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0,1,0] => [[.,[[[[[.,.],.],.],.],.]],.] => 2
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0,1,1,0,0] => [[.,[[[[.,.],.],.],.]],[.,.]] => 3
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0,1,0] => [[[.,[[[[.,.],.],.],.]],.],.] => 3
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,1,0,1,0,0] => [[.,[[[.,.],.],.]],[[.,.],.]] => 3
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,0,0,1,1,0,0,1,0] => [[[.,[[[.,.],.],.]],[.,.]],.] => 3
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,1,0,0] => [[[.,[[[.,.],.],.]],.],[.,.]] => 4
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0,1,0] => [[[[.,[[[.,.],.],.]],.],.],.] => 4
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,1,0,1,0,1,0,0] => [[.,[[.,.],.]],[[[.,.],.],.]] => 3
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0,1,0] => [[[.,[[.,.],.]],[[.,.],.]],.] => 3
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0,1,1,0,0] => [[[.,[[.,.],.]],[.,.]],[.,.]] => 4
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0,1,0] => [[[[.,[[.,.],.]],[.,.]],.],.] => 4
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,1,0,1,0,0] => [[[.,[[.,.],.]],.],[[.,.],.]] => 4
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,1,0,0,1,0] => [[[[.,[[.,.],.]],.],[.,.]],.] => 4
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,1,0,0] => [[[[.,[[.,.],.]],.],.],[.,.]] => 5
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0] => [[[[[.,[[.,.],.]],.],.],.],.] => 5
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,1,0,1,0,1,0,1,0,0] => [[.,[.,.]],[[[[.,.],.],.],.]] => 3
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0,1,0] => [[[.,[.,.]],[[[.,.],.],.]],.] => 3
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0,1,1,0,0] => [[[.,[.,.]],[[.,.],.]],[.,.]] => 4
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0,1,0] => [[[[.,[.,.]],[[.,.],.]],.],.] => 4
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,1,0,0] => [[[.,[.,.]],[.,.]],[[.,.],.]] => 4
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [[[[.,[.,.]],[.,.]],[.,.]],.] => 4
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0] => [[[[.,[.,.]],[.,.]],.],[.,.]] => 5
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [[[[[.,[.,.]],[.,.]],.],.],.] => 5
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,1,0,1,0,1,0,0] => [[[.,[.,.]],.],[[[.,.],.],.]] => 4
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,1,0,0,1,0] => [[[[.,[.,.]],.],[[.,.],.]],.] => 4
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [[[[.,[.,.]],.],[.,.]],[.,.]] => 5
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0] => [[[[[.,[.,.]],.],[.,.]],.],.] => 5
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,1,0,0] => [[[[.,[.,.]],.],.],[[.,.],.]] => 5
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [[[[[.,[.,.]],.],.],[.,.]],.] => 5
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [[[[[.,[.,.]],.],.],.],[.,.]] => 6
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [[[[[[.,[.,.]],.],.],.],.],.] => 6
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,1,0,1,0,1,0,1,0,1,0,0] => [[.,.],[[[[[.,.],.],.],.],.]] => 3
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0,1,0] => [[[.,.],[[[[.,.],.],.],.]],.] => 3
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,1,0,1,0,1,0,0,1,1,0,0] => [[[.,.],[[[.,.],.],.]],[.,.]] => 4
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0,1,0] => [[[[.,.],[[[.,.],.],.]],.],.] => 4
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,1,0,0,1,1,0,1,0,0] => [[[.,.],[[.,.],.]],[[.,.],.]] => 4
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,0,0,1,1,0,0,1,0] => [[[[.,.],[[.,.],.]],[.,.]],.] => 4
>>> Load all 177 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of external nodes of a binary tree.
That is, the number of nodes that can be reached from the root by only left steps or only right steps, plus $1$ for the root node itself. A counting formula for the number of external node in all binary trees of size $n$ can be found in [1].
That is, the number of nodes that can be reached from the root by only left steps or only right steps, plus $1$ for the root node itself. A counting formula for the number of external node in all binary trees of size $n$ can be found in [1].
Map
Delest-Viennot
Description
Return the Dyck path corresponding to the parallelogram polyomino obtained by applying Delest-Viennot's bijection.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
The Delest-Viennot bijection $\beta$ returns the parallelogram polyomino, whose column heights are the heights of the peaks of the Dyck path, and the intersection heights between columns are the heights of the valleys of the Dyck path.
This map returns the Dyck path $(\gamma^{(-1)}\circ\beta)(D)$.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
The Delest-Viennot bijection $\beta$ returns the parallelogram polyomino, whose column heights are the heights of the peaks of the Dyck path, and the intersection heights between columns are the heights of the valleys of the Dyck path.
This map returns the Dyck path $(\gamma^{(-1)}\circ\beta)(D)$.
Map
to binary tree: left tree, up step, right tree, down step
Description
Return the binary tree corresponding to the Dyck path under the transformation left tree - up step - right tree - down step.
A Dyck path $D$ of semilength $n$ with $n > 1$ may be uniquely decomposed into $L 1 R 0$ for Dyck paths $L,R$ of respective semilengths $n_1,n_2$ with $n_1+n_2 = n-1$.
This map sends $D$ to the binary tree $T$ consisting of a root node with a left child according to $L$ and a right child according to $R$ and then recursively proceeds.
The base case of the unique Dyck path of semilength $1$ is sent to a single node.
This map may also be described as the unique map sending the Tamari orders on Dyck paths to the Tamari order on binary trees.
A Dyck path $D$ of semilength $n$ with $n > 1$ may be uniquely decomposed into $L 1 R 0$ for Dyck paths $L,R$ of respective semilengths $n_1,n_2$ with $n_1+n_2 = n-1$.
This map sends $D$ to the binary tree $T$ consisting of a root node with a left child according to $L$ and a right child according to $R$ and then recursively proceeds.
The base case of the unique Dyck path of semilength $1$ is sent to a single node.
This map may also be described as the unique map sending the Tamari orders on Dyck paths to the Tamari order on binary trees.
Map
bounce path
Description
The bounce path determined by an integer composition.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!