Identifier
- St000208: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[1]=>1
[2]=>2
[1,1]=>1
[3]=>3
[2,1]=>2
[1,1,1]=>1
[4]=>5
[3,1]=>4
[2,2]=>3
[2,1,1]=>2
[1,1,1,1]=>1
[5]=>7
[4,1]=>6
[3,2]=>4
[3,1,1]=>4
[2,2,1]=>2
[2,1,1,1]=>2
[1,1,1,1,1]=>1
[6]=>11
[5,1]=>10
[4,2]=>8
[4,1,1]=>7
[3,3]=>6
[3,2,1]=>4
[3,1,1,1]=>4
[2,2,2]=>3
[2,2,1,1]=>2
[2,1,1,1,1]=>2
[1,1,1,1,1,1]=>1
[7]=>15
[6,1]=>14
[5,2]=>12
[5,1,1]=>11
[4,3]=>8
[4,2,1]=>6
[4,1,1,1]=>7
[3,3,1]=>5
[3,2,2]=>5
[3,2,1,1]=>4
[3,1,1,1,1]=>4
[2,2,2,1]=>2
[2,2,1,1,1]=>2
[2,1,1,1,1,1]=>2
[1,1,1,1,1,1,1]=>1
[8]=>22
[7,1]=>21
[6,2]=>19
[6,1,1]=>17
[5,3]=>15
[5,2,1]=>9
[5,1,1,1]=>12
[4,4]=>12
[4,3,1]=>9
[4,2,2]=>9
[4,2,1,1]=>7
[4,1,1,1,1]=>7
[3,3,2]=>5
[3,3,1,1]=>5
[3,2,2,1]=>3
[3,2,1,1,1]=>4
[3,1,1,1,1,1]=>4
[2,2,2,2]=>3
[2,2,2,1,1]=>2
[2,2,1,1,1,1]=>2
[2,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight.
Given $\lambda$ count how many integer partitions $w$ (weight) there are, such that
$P_{\lambda,w}$ is integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has only integer lattice points as vertices.
See also St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight., St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. and St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight..
Given $\lambda$ count how many integer partitions $w$ (weight) there are, such that
$P_{\lambda,w}$ is integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has only integer lattice points as vertices.
See also St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight., St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. and St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight..
References
[1] De Loera, Jesús A., McAllister, T. B. Vertices of Gelfand-Tsetlin polytopes MathSciNet:2096742
Created
May 19, 2014 at 11:36 by Per Alexandersson
Updated
May 29, 2015 at 17:10 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!