Identifier
Values
[+] => [1] => [1] => ([],1) => 0
[-] => [1] => [1] => ([],1) => 0
[-,+] => [2,1] => [1,1] => ([(0,1)],2) => 1
[2,1] => [2,1] => [1,1] => ([(0,1)],2) => 1
[-,+,+] => [2,3,1] => [2,1] => ([(0,2),(1,2)],3) => 2
[+,-,+] => [1,3,2] => [2,1] => ([(0,2),(1,2)],3) => 2
[+,3,2] => [1,3,2] => [2,1] => ([(0,2),(1,2)],3) => 2
[2,1,+] => [2,3,1] => [2,1] => ([(0,2),(1,2)],3) => 2
[3,1,2] => [2,3,1] => [2,1] => ([(0,2),(1,2)],3) => 2
[3,+,1] => [2,3,1] => [2,1] => ([(0,2),(1,2)],3) => 2
[-,+,+,+] => [2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[+,-,+,+] => [1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[+,+,-,+] => [1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[+,+,4,3] => [1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[+,3,2,+] => [1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[+,4,2,3] => [1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[+,4,+,2] => [1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[2,1,+,+] => [2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[3,1,2,+] => [2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[3,+,1,+] => [2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[4,1,2,3] => [2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[4,1,+,2] => [2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[4,+,1,3] => [2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[4,+,+,1] => [2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[-,+,+,+,+] => [2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[+,-,+,+,+] => [1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[+,+,-,+,+] => [1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[+,+,+,-,+] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[+,+,+,5,4] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[+,+,4,3,+] => [1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[+,+,5,3,4] => [1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[+,+,5,+,3] => [1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[+,3,2,+,+] => [1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[+,4,2,3,+] => [1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[+,4,+,2,+] => [1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[+,5,2,3,4] => [1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[+,5,2,+,3] => [1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[+,5,+,2,4] => [1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[+,5,+,+,2] => [1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[2,1,+,+,+] => [2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[3,1,2,+,+] => [2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[3,+,1,+,+] => [2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[4,1,2,3,+] => [2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[4,1,+,2,+] => [2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[4,+,1,3,+] => [2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[4,+,+,1,+] => [2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[5,1,2,3,4] => [2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[5,1,2,+,3] => [2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[5,1,+,2,4] => [2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[5,1,+,+,2] => [2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[5,+,1,3,4] => [2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[5,+,1,+,3] => [2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[5,+,+,1,4] => [2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[5,+,+,+,1] => [2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[-,+,+,+,+,+] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,-,+,+,+,+] => [1,3,4,5,6,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,+,-,+,+,+] => [1,2,4,5,6,3] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,+,+,-,+,+] => [1,2,3,5,6,4] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,+,+,+,-,+] => [1,2,3,4,6,5] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,+,+,+,6,5] => [1,2,3,4,6,5] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,+,+,5,4,+] => [1,2,3,5,6,4] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,+,+,6,4,5] => [1,2,3,5,6,4] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,+,+,6,+,4] => [1,2,3,5,6,4] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,+,4,3,+,+] => [1,2,4,5,6,3] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,+,5,3,4,+] => [1,2,4,5,6,3] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,+,5,+,3,+] => [1,2,4,5,6,3] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,+,6,3,4,5] => [1,2,4,5,6,3] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,+,6,3,+,4] => [1,2,4,5,6,3] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,+,6,+,3,5] => [1,2,4,5,6,3] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,+,6,+,+,3] => [1,2,4,5,6,3] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,3,2,+,+,+] => [1,3,4,5,6,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,4,2,3,+,+] => [1,3,4,5,6,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,4,+,2,+,+] => [1,3,4,5,6,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,5,2,3,4,+] => [1,3,4,5,6,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,5,2,+,3,+] => [1,3,4,5,6,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,5,+,2,4,+] => [1,3,4,5,6,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,5,+,+,2,+] => [1,3,4,5,6,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,6,2,3,4,5] => [1,3,4,5,6,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,6,2,3,+,4] => [1,3,4,5,6,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,6,2,+,3,5] => [1,3,4,5,6,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,6,2,+,+,3] => [1,3,4,5,6,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,6,+,2,4,5] => [1,3,4,5,6,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,6,+,2,+,4] => [1,3,4,5,6,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,6,+,+,2,5] => [1,3,4,5,6,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[+,6,+,+,+,2] => [1,3,4,5,6,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[2,1,+,+,+,+] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[3,1,2,+,+,+] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[3,+,1,+,+,+] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[4,1,2,3,+,+] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[4,1,+,2,+,+] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[4,+,1,3,+,+] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[4,+,+,1,+,+] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[5,1,2,3,4,+] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[5,1,2,+,3,+] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[5,1,+,2,4,+] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[5,1,+,+,2,+] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[5,+,1,3,4,+] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[5,+,1,+,3,+] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[5,+,+,1,4,+] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[5,+,+,+,1,+] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[6,1,2,3,4,5] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
>>> Load all 116 entries. <<<
[6,1,2,3,+,4] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[6,1,2,+,3,5] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[6,1,2,+,+,3] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[6,1,+,2,4,5] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[6,1,+,2,+,4] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[6,1,+,+,2,5] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[6,1,+,+,+,2] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[6,+,1,3,4,5] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[6,+,1,3,+,4] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[6,+,1,+,3,5] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[6,+,1,+,+,3] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[6,+,+,1,4,5] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[6,+,+,1,+,4] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[6,+,+,+,1,5] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[6,+,+,+,+,1] => [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
upper permutation
Description
The upper bound in the Grassmann interval corresponding to the decorated permutation.
Let $I$ be the anti-exceedance set of a decorated permutation $w$. Let $v$ be the $k$-Grassmannian permutation determined by $v[k] = w^{-1}(I)$ and let $u$ be the permutation satisfying $u = wv$. Then $[u, v]$ is the Grassmann interval corresponding to $w$.
This map returns $v$.
Map
descent composition
Description
The descent composition of a permutation.
The descent composition of a permutation $\pi$ of length $n$ is the integer composition of $n$ whose descent set equals the descent set of $\pi$. The descent set of a permutation $\pi$ is $\{i \mid 1 \leq i < n, \pi(i) > \pi(i+1)\}$. The descent set of a composition $c = (i_1, i_2, \ldots, i_k)$ is the set $\{ i_1, i_1 + i_2, i_1 + i_2 + i_3, \ldots, i_1 + i_2 + \cdots + i_{k-1} \}$.