Identifier
Values
0 => 0 => [1] => ([],1) => 0
1 => 1 => [1] => ([],1) => 0
01 => 01 => [1,1] => ([(0,1)],2) => 1
10 => 01 => [1,1] => ([(0,1)],2) => 1
001 => 001 => [2,1] => ([(0,2),(1,2)],3) => 2
010 => 001 => [2,1] => ([(0,2),(1,2)],3) => 2
100 => 001 => [2,1] => ([(0,2),(1,2)],3) => 2
0001 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
0010 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
0100 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
0101 => 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
1000 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
00001 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
00010 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
00100 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
00101 => 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
01000 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
01001 => 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
01010 => 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
10000 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
000001 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
000010 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
000100 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
000101 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
001000 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
001001 => 001001 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
001010 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
001101 => 001101 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
010000 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
010001 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
010010 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
010011 => 001101 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
010100 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
010101 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
100000 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
0000001 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
0000010 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
0000100 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
0000101 => 0000101 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
0001000 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
0001001 => 0001001 => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
0001010 => 0000101 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
0001101 => 0001101 => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
0010000 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
0010001 => 0001001 => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
0010010 => 0001001 => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
0010100 => 0000101 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
0010101 => 0010101 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
0011010 => 0001101 => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
0011101 => 0011101 => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
0100000 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
0100001 => 0000101 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
0100010 => 0000101 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
0100011 => 0001101 => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
0100100 => 0000101 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
0100101 => 0010101 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
0100110 => 0001101 => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
0100111 => 0011101 => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
0101000 => 0000101 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
0101001 => 0010101 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
0101010 => 0010101 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
1000000 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
Map
runsort
Description
The word obtained by sorting the weakly increasing runs lexicographically.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
delta morphism
Description
Applies the delta morphism to a binary word.
The delta morphism of a finite word $w$ is the integer compositions composed of the lengths of consecutive runs of the same letter in $w$.