Identifier
-
Mp00226:
Standard tableaux
—row-to-column-descents⟶
Standard tableaux
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000259: Graphs ⟶ ℤ
Values
[[1]] => [[1]] => [1] => ([],1) => 0
[[1],[2]] => [[1],[2]] => [1,1] => ([(0,1)],2) => 1
[[1,3],[2]] => [[1,2],[3]] => [2,1] => ([(0,2),(1,2)],3) => 2
[[1],[2],[3]] => [[1],[2],[3]] => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 1
[[1,2,4],[3]] => [[1,2,3],[4]] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[[1,2],[3,4]] => [[1,3],[2,4]] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 2
[[1,4],[2],[3]] => [[1,3],[2],[4]] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 2
[[1,3],[2],[4]] => [[1,2],[3],[4]] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[[1],[2],[3],[4]] => [[1],[2],[3],[4]] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
[[1,2,3,5],[4]] => [[1,2,3,4],[5]] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[[1,3,5],[2,4]] => [[1,2,4],[3,5]] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[1,2,5],[3,4]] => [[1,3,4],[2,5]] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[1,3,5],[2],[4]] => [[1,2,4],[3],[5]] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[1,2,5],[3],[4]] => [[1,3,4],[2],[5]] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[1,2,4],[3],[5]] => [[1,2,3],[4],[5]] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[1,3],[2,5],[4]] => [[1,2],[3,4],[5]] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[1,2],[3,5],[4]] => [[1,3],[2,4],[5]] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[1,2],[3,4],[5]] => [[1,4],[2,5],[3]] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[1,5],[2],[3],[4]] => [[1,4],[2],[3],[5]] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[1,4],[2],[3],[5]] => [[1,3],[2],[4],[5]] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[1,3],[2],[4],[5]] => [[1,2],[3],[4],[5]] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[1],[2],[3],[4],[5]] => [[1],[2],[3],[4],[5]] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[[1,2,3,4,6],[5]] => [[1,2,3,4,5],[6]] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,3,4,6],[2,5]] => [[1,2,4,5],[3,6]] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2,4,6],[3,5]] => [[1,2,3,5],[4,6]] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2,3,6],[4,5]] => [[1,3,4,5],[2,6]] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,3,4,6],[2],[5]] => [[1,2,4,5],[3],[6]] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2,4,6],[3],[5]] => [[1,2,3,5],[4],[6]] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2,3,6],[4],[5]] => [[1,3,4,5],[2],[6]] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2,3,5],[4],[6]] => [[1,2,3,4],[5],[6]] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,3,4],[2,5,6]] => [[1,2,5],[3,4,6]] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2,3],[4,5,6]] => [[1,3,5],[2,4,6]] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,4,6],[2,5],[3]] => [[1,3,5],[2,6],[4]] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,3,6],[2,5],[4]] => [[1,2,4],[3,5],[6]] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2,6],[3,5],[4]] => [[1,3,4],[2,5],[6]] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,3,6],[2,4],[5]] => [[1,2,5],[3,4],[6]] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2,6],[3,4],[5]] => [[1,3,5],[2,4],[6]] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,3,4],[2,6],[5]] => [[1,2,5],[3,6],[4]] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2,4],[3,6],[5]] => [[1,2,3],[4,5],[6]] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2,3],[4,6],[5]] => [[1,4,5],[2,6],[3]] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,4,6],[2],[3],[5]] => [[1,3,5],[2],[4],[6]] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,3,6],[2],[4],[5]] => [[1,2,5],[3],[4],[6]] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2,6],[3],[4],[5]] => [[1,4,5],[2],[3],[6]] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,3,5],[2],[4],[6]] => [[1,2,4],[3],[5],[6]] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2,5],[3],[4],[6]] => [[1,3,4],[2],[5],[6]] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2,4],[3],[5],[6]] => [[1,2,3],[4],[5],[6]] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,4],[2,5],[3,6]] => [[1,3],[2,5],[4,6]] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,3],[2,4],[5,6]] => [[1,2],[3,5],[4,6]] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,4],[2,6],[3],[5]] => [[1,3],[2,5],[4],[6]] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,3],[2,6],[4],[5]] => [[1,2],[3,5],[4],[6]] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2],[3,6],[4],[5]] => [[1,4],[2,5],[3],[6]] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,3],[2,5],[4],[6]] => [[1,2],[3,4],[5],[6]] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2],[3,5],[4],[6]] => [[1,3],[2,4],[5],[6]] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2],[3,4],[5],[6]] => [[1,5],[2,6],[3],[4]] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,6],[2],[3],[4],[5]] => [[1,5],[2],[3],[4],[6]] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,5],[2],[3],[4],[6]] => [[1,4],[2],[3],[5],[6]] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,4],[2],[3],[5],[6]] => [[1,3],[2],[4],[5],[6]] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,3],[2],[4],[5],[6]] => [[1,2],[3],[4],[5],[6]] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1],[2],[3],[4],[5],[6]] => [[1],[2],[3],[4],[5],[6]] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[1,2,3,4,5,7],[6]] => [[1,2,3,4,5,6],[7]] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[[1,3,4,5,7],[2,6]] => [[1,2,4,5,6],[3,7]] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,4,5,7],[3,6]] => [[1,2,3,5,6],[4,7]] => [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,3,5,7],[4,6]] => [[1,2,3,4,6],[5,7]] => [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,3,4,7],[5,6]] => [[1,3,4,5,6],[2,7]] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,3,4,5,7],[2],[6]] => [[1,2,4,5,6],[3],[7]] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,4,5,7],[3],[6]] => [[1,2,3,5,6],[4],[7]] => [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,3,5,7],[4],[6]] => [[1,2,3,4,6],[5],[7]] => [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,3,4,7],[5],[6]] => [[1,3,4,5,6],[2],[7]] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,3,4,6],[5],[7]] => [[1,2,3,4,5],[6],[7]] => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,3,5,7],[2,4,6]] => [[1,2,4,6],[3,5,7]] => [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,5,7],[3,4,6]] => [[1,3,4,6],[2,5,7]] => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,3,4,7],[2,5,6]] => [[1,2,5,6],[3,4,7]] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,4,7],[3,5,6]] => [[1,2,3,6],[4,5,7]] => [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,3,7],[4,5,6]] => [[1,3,5,6],[2,4,7]] => [1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,4,5,7],[2,6],[3]] => [[1,3,5,6],[2,7],[4]] => [1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,3,5,7],[2,6],[4]] => [[1,2,4,6],[3,7],[5]] => [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,5,7],[3,6],[4]] => [[1,3,4,6],[2,7],[5]] => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,3,4,7],[2,6],[5]] => [[1,2,4,5],[3,6],[7]] => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,4,7],[3,6],[5]] => [[1,2,3,5],[4,6],[7]] => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,3,7],[4,6],[5]] => [[1,3,4,5],[2,6],[7]] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,3,5,7],[2,4],[6]] => [[1,2,4,6],[3,5],[7]] => [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,5,7],[3,4],[6]] => [[1,3,4,6],[2,5],[7]] => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,3,4,7],[2,5],[6]] => [[1,2,5,6],[3,4],[7]] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,4,7],[3,5],[6]] => [[1,2,3,6],[4,5],[7]] => [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,3,7],[4,5],[6]] => [[1,3,5,6],[2,4],[7]] => [1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,3,4,5],[2,7],[6]] => [[1,2,5,6],[3,7],[4]] => [2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,4,5],[3,7],[6]] => [[1,2,3,6],[4,7],[5]] => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,3,5],[4,7],[6]] => [[1,2,3,4],[5,6],[7]] => [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,3,4],[5,7],[6]] => [[1,4,5,6],[2,7],[3]] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,4,5,7],[2],[3],[6]] => [[1,3,5,6],[2],[4],[7]] => [1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,3,5,7],[2],[4],[6]] => [[1,2,4,6],[3],[5],[7]] => [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,5,7],[3],[4],[6]] => [[1,3,4,6],[2],[5],[7]] => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,3,4,7],[2],[5],[6]] => [[1,2,5,6],[3],[4],[7]] => [2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,4,7],[3],[5],[6]] => [[1,2,3,6],[4],[5],[7]] => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,3,7],[4],[5],[6]] => [[1,4,5,6],[2],[3],[7]] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,3,4,6],[2],[5],[7]] => [[1,2,4,5],[3],[6],[7]] => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,4,6],[3],[5],[7]] => [[1,2,3,5],[4],[6],[7]] => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,3,6],[4],[5],[7]] => [[1,3,4,5],[2],[6],[7]] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,2,3,5],[4],[6],[7]] => [[1,2,3,4],[5],[6],[7]] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,4,5],[2,6,7],[3]] => [[1,3,6],[2,5,7],[4]] => [1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[1,3,5],[2,6,7],[4]] => [[1,2,6],[3,4,7],[5]] => [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
>>> Load all 171 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
This is the greatest distance between any pair of vertices.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
row-to-column-descents
Description
Return a standard tableau whose column descent set equals the row descent set of the original tableau.
A column descent in a standard tableau is an entry i such that i+1 appears in a column to the left of the cell containing i, in English notation.
A row descent is an entry i such that i+1 appears in a row above of the cell containing i.
A column descent in a standard tableau is an entry i such that i+1 appears in a column to the left of the cell containing i, in English notation.
A row descent is an entry i such that i+1 appears in a row above of the cell containing i.
Map
horizontal strip sizes
Description
The composition of horizontal strip sizes.
We associate to a standard Young tableau T the composition (c1,…,ck), such that k is minimal and the numbers c1+⋯+ci+1,…,c1+⋯+ci+1 form a horizontal strip in T for all i.
We associate to a standard Young tableau T the composition (c1,…,ck), such that k is minimal and the numbers c1+⋯+ci+1,…,c1+⋯+ci+1 form a horizontal strip in T for all i.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!