Identifier
-
Mp00012:
Binary trees
—to Dyck path: up step, left tree, down step, right tree⟶
Dyck paths
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000260: Graphs ⟶ ℤ
Values
[.,.] => [1,0] => [1] => ([],1) => 0
[.,[.,.]] => [1,0,1,0] => [1,1] => ([(0,1)],2) => 1
[.,[.,[.,.]]] => [1,0,1,0,1,0] => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 1
[[.,.],[.,.]] => [1,1,0,0,1,0] => [2,1] => ([(0,2),(1,2)],3) => 1
[.,[.,[.,[.,.]]]] => [1,0,1,0,1,0,1,0] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
[.,[[.,.],[.,.]]] => [1,0,1,1,0,0,1,0] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
[[.,.],[.,[.,.]]] => [1,1,0,0,1,0,1,0] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
[[.,[.,.]],[.,.]] => [1,1,0,1,0,0,1,0] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 1
[[[.,.],.],[.,.]] => [1,1,1,0,0,0,1,0] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 1
[.,[.,[.,[.,[.,.]]]]] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[.,[.,[[.,.],[.,.]]]] => [1,0,1,0,1,1,0,0,1,0] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[.,[[.,.],[.,[.,.]]]] => [1,0,1,1,0,0,1,0,1,0] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[.,[[.,[.,.]],[.,.]]] => [1,0,1,1,0,1,0,0,1,0] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 1
[.,[[[.,.],.],[.,.]]] => [1,0,1,1,1,0,0,0,1,0] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 1
[[.,.],[.,[.,[.,.]]]] => [1,1,0,0,1,0,1,0,1,0] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[[.,.],[[.,.],[.,.]]] => [1,1,0,0,1,1,0,0,1,0] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[[.,[.,.]],[.,[.,.]]] => [1,1,0,1,0,0,1,0,1,0] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[[[.,.],.],[.,[.,.]]] => [1,1,1,0,0,0,1,0,1,0] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[[.,[.,[.,.]]],[.,.]] => [1,1,0,1,0,1,0,0,1,0] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 1
[[.,[[.,.],.]],[.,.]] => [1,1,0,1,1,0,0,0,1,0] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 1
[[[.,.],[.,.]],[.,.]] => [1,1,1,0,0,1,0,0,1,0] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 1
[[[.,[.,.]],.],[.,.]] => [1,1,1,0,1,0,0,0,1,0] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 1
[[[[.,.],.],.],[.,.]] => [1,1,1,1,0,0,0,0,1,0] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 1
[.,[.,[.,[.,[.,[.,.]]]]]] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[.,[.,[.,[[.,.],[.,.]]]]] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[.,[.,[[.,.],[.,[.,.]]]]] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[.,[.,[[.,[.,.]],[.,.]]]] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[.,[.,[[[.,.],.],[.,.]]]] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[.,[[.,.],[.,[.,[.,.]]]]] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[.,[[.,.],[[.,.],[.,.]]]] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[.,[[.,[.,.]],[.,[.,.]]]] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[.,[[[.,.],.],[.,[.,.]]]] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[.,[[.,[.,[.,.]]],[.,.]]] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
[.,[[.,[[.,.],.]],[.,.]]] => [1,0,1,1,0,1,1,0,0,0,1,0] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
[.,[[[.,.],[.,.]],[.,.]]] => [1,0,1,1,1,0,0,1,0,0,1,0] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
[.,[[[.,[.,.]],.],[.,.]]] => [1,0,1,1,1,0,1,0,0,0,1,0] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
[.,[[[[.,.],.],.],[.,.]]] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[.,.],[.,[.,[.,[.,.]]]]] => [1,1,0,0,1,0,1,0,1,0,1,0] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[.,.],[.,[[.,.],[.,.]]]] => [1,1,0,0,1,0,1,1,0,0,1,0] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[.,.],[[.,.],[.,[.,.]]]] => [1,1,0,0,1,1,0,0,1,0,1,0] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[.,.],[[.,[.,.]],[.,.]]] => [1,1,0,0,1,1,0,1,0,0,1,0] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[.,.],[[[.,.],.],[.,.]]] => [1,1,0,0,1,1,1,0,0,0,1,0] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[.,[.,.]],[.,[.,[.,.]]]] => [1,1,0,1,0,0,1,0,1,0,1,0] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[.,[.,.]],[[.,.],[.,.]]] => [1,1,0,1,0,0,1,1,0,0,1,0] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[[.,.],.],[.,[.,[.,.]]]] => [1,1,1,0,0,0,1,0,1,0,1,0] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[[.,.],.],[[.,.],[.,.]]] => [1,1,1,0,0,0,1,1,0,0,1,0] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[.,[.,[.,.]]],[.,[.,.]]] => [1,1,0,1,0,1,0,0,1,0,1,0] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[.,[[.,.],.]],[.,[.,.]]] => [1,1,0,1,1,0,0,0,1,0,1,0] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[[.,.],[.,.]],[.,[.,.]]] => [1,1,1,0,0,1,0,0,1,0,1,0] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[[.,[.,.]],.],[.,[.,.]]] => [1,1,1,0,1,0,0,0,1,0,1,0] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[[[.,.],.],.],[.,[.,.]]] => [1,1,1,1,0,0,0,0,1,0,1,0] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[.,[.,[.,[.,.]]]],[.,.]] => [1,1,0,1,0,1,0,1,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
[[.,[.,[[.,.],.]]],[.,.]] => [1,1,0,1,0,1,1,0,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
[[.,[[.,.],[.,.]]],[.,.]] => [1,1,0,1,1,0,0,1,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
[[.,[[.,[.,.]],.]],[.,.]] => [1,1,0,1,1,0,1,0,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
[[.,[[[.,.],.],.]],[.,.]] => [1,1,0,1,1,1,0,0,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
[[[.,.],[.,[.,.]]],[.,.]] => [1,1,1,0,0,1,0,1,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
[[[.,.],[[.,.],.]],[.,.]] => [1,1,1,0,0,1,1,0,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
[[[.,[.,.]],[.,.]],[.,.]] => [1,1,1,0,1,0,0,1,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
[[[[.,.],.],[.,.]],[.,.]] => [1,1,1,1,0,0,0,1,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
[[[.,[.,[.,.]]],.],[.,.]] => [1,1,1,0,1,0,1,0,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
[[[.,[[.,.],.]],.],[.,.]] => [1,1,1,0,1,1,0,0,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
[[[[.,.],[.,.]],.],[.,.]] => [1,1,1,1,0,0,1,0,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
[[[[.,[.,.]],.],.],[.,.]] => [1,1,1,1,0,1,0,0,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
[[[[[.,.],.],.],.],[.,.]] => [1,1,1,1,1,0,0,0,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[.,[.,[[.,.],[.,[.,.]]]]]] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[.,[.,[[.,[.,.]],[.,.]]]]] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[.,[.,[[[.,.],.],[.,.]]]]] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[.,[[.,.],[.,[.,[.,.]]]]]] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[.,[[.,.],[[.,.],[.,.]]]]] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[.,[[.,[.,.]],[.,[.,.]]]]] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[.,[[[.,.],.],[.,[.,.]]]]] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[.,[[.,[.,[.,.]]],[.,.]]]] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[.,[[.,[[.,.],.]],[.,.]]]] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[.,[[[.,.],[.,.]],[.,.]]]] => [1,0,1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[.,[[[.,[.,.]],.],[.,.]]]] => [1,0,1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[.,[[[[.,.],.],.],[.,.]]]] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[[.,.],[.,[.,[.,[.,.]]]]]] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[[.,.],[.,[[.,.],[.,.]]]]] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[[.,.],[[.,.],[.,[.,.]]]]] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[[.,.],[[.,[.,.]],[.,.]]]] => [1,0,1,1,0,0,1,1,0,1,0,0,1,0] => [1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[[.,.],[[[.,.],.],[.,.]]]] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => [1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[[.,[.,.]],[.,[.,[.,.]]]]] => [1,0,1,1,0,1,0,0,1,0,1,0,1,0] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[[.,[.,.]],[[.,.],[.,.]]]] => [1,0,1,1,0,1,0,0,1,1,0,0,1,0] => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[[[.,.],.],[.,[.,[.,.]]]]] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[[[.,.],.],[[.,.],[.,.]]]] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[[.,[.,[.,.]]],[.,[.,.]]]] => [1,0,1,1,0,1,0,1,0,0,1,0,1,0] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[[.,[[.,.],.]],[.,[.,.]]]] => [1,0,1,1,0,1,1,0,0,0,1,0,1,0] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[[[.,.],[.,.]],[.,[.,.]]]] => [1,0,1,1,1,0,0,1,0,0,1,0,1,0] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[[[.,[.,.]],.],[.,[.,.]]]] => [1,0,1,1,1,0,1,0,0,0,1,0,1,0] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[[[[.,.],.],.],[.,[.,.]]]] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[[.,[.,[.,[.,.]]]],[.,.]]] => [1,0,1,1,0,1,0,1,0,1,0,0,1,0] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[[.,[.,[[.,.],.]]],[.,.]]] => [1,0,1,1,0,1,0,1,1,0,0,0,1,0] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[[.,[[.,.],[.,.]]],[.,.]]] => [1,0,1,1,0,1,1,0,0,1,0,0,1,0] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[[.,[[.,[.,.]],.]],[.,.]]] => [1,0,1,1,0,1,1,0,1,0,0,0,1,0] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[[.,[[[.,.],.],.]],[.,.]]] => [1,0,1,1,0,1,1,1,0,0,0,0,1,0] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[[[.,.],[.,[.,.]]],[.,.]]] => [1,0,1,1,1,0,0,1,0,1,0,0,1,0] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[[[.,.],[[.,.],.]],[.,.]]] => [1,0,1,1,1,0,0,1,1,0,0,0,1,0] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 1
[.,[[[.,[.,.]],[.,.]],[.,.]]] => [1,0,1,1,1,0,1,0,0,1,0,0,1,0] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 1
>>> Load all 197 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
This is the minimum eccentricity of any vertex.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
touch composition
Description
Sends a Dyck path to its touch composition given by the composition of lengths of its touch points.
Map
to Dyck path: up step, left tree, down step, right tree
Description
Return the associated Dyck path, using the bijection 1L0R.
This is given recursively as follows:
This is given recursively as follows:
- a leaf is associated to the empty Dyck Word
- a tree with children $l,r$ is associated with the Dyck path described by 1L0R where $L$ and $R$ are respectively the Dyck words associated with the trees $l$ and $r$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!