Identifier
-
Mp00268:
Binary words
—zeros to flag zeros⟶
Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000260: Graphs ⟶ ℤ
Values
1 => 1 => [1,1] => ([(0,1)],2) => 1
10 => 01 => [2,1] => ([(0,2),(1,2)],3) => 1
11 => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 1
100 => 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
101 => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 1
110 => 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
111 => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
1000 => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
1001 => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
1010 => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 1
1011 => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 1
1100 => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
1101 => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
1110 => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
1111 => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
10000 => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
10001 => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
10010 => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
10011 => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
10100 => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
10101 => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
10110 => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
10111 => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
11000 => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
11001 => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
11010 => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
11011 => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
11100 => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
11101 => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
11110 => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
11111 => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
100000 => 010101 => [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
100001 => 110101 => [1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
100010 => 100101 => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
100011 => 000101 => [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
100100 => 101101 => [1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
100101 => 001101 => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
100110 => 011101 => [2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
100111 => 111101 => [1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
101000 => 101001 => [1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
101001 => 001001 => [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
101010 => 011001 => [2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
101011 => 111001 => [1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
101100 => 010001 => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
101101 => 110001 => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
101110 => 100001 => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 1
101111 => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 1
110000 => 101011 => [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
110001 => 001011 => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
110010 => 011011 => [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
110011 => 111011 => [1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
110100 => 010011 => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
110101 => 110011 => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
110110 => 100011 => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
110111 => 000011 => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
111000 => 010111 => [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
111001 => 110111 => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
111010 => 100111 => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
111011 => 000111 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
111100 => 101111 => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
111101 => 001111 => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
111110 => 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
111111 => 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
=> => [1] => ([],1) => 0
search for individual values
searching the database for the individual values of this statistic
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
This is the minimum eccentricity of any vertex.
Map
to composition
Description
The composition corresponding to a binary word.
Prepending $1$ to a binary word $w$, the $i$-th part of the composition equals $1$ plus the number of zeros after the $i$-th $1$ in $w$.
This map is not surjective, since the empty composition does not have a preimage.
Prepending $1$ to a binary word $w$, the $i$-th part of the composition equals $1$ plus the number of zeros after the $i$-th $1$ in $w$.
This map is not surjective, since the empty composition does not have a preimage.
Map
zeros to flag zeros
Description
Return a binary word of the same length, such that the number of occurrences of $10$ in the word obtained by prepending the reverse of the complement equals the number of $0$s in the original word.
For example, the image of the word $w=1\dots1$ is $1\dots1$, because $w$ has no zeros, and $1\dots1$ is the only word such that prepending the reverse of its complement has no occurrence of the factor $10$.
On the other hand, $0\dots0$ must be mapped to $10\dots10$ if the length is even, and $010\dots10$ if it is odd.
For example, the image of the word $w=1\dots1$ is $1\dots1$, because $w$ has no zeros, and $1\dots1$ is the only word such that prepending the reverse of its complement has no occurrence of the factor $10$.
On the other hand, $0\dots0$ must be mapped to $10\dots10$ if the length is even, and $010\dots10$ if it is odd.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!