Identifier
- St000277: Integer compositions ⟶ ℤ
Values
=>
[1]=>1
[1,1]=>1
[2]=>1
[1,1,1]=>1
[1,2]=>2
[2,1]=>2
[3]=>1
[1,1,1,1]=>1
[1,1,2]=>3
[1,2,1]=>5
[1,3]=>3
[2,1,1]=>3
[2,2]=>5
[3,1]=>3
[4]=>1
[1,1,1,1,1]=>1
[1,1,1,2]=>4
[1,1,2,1]=>9
[1,1,3]=>6
[1,2,1,1]=>9
[1,2,2]=>16
[1,3,1]=>11
[1,4]=>4
[2,1,1,1]=>4
[2,1,2]=>11
[2,2,1]=>16
[2,3]=>9
[3,1,1]=>6
[3,2]=>9
[4,1]=>4
[5]=>1
[1,1,1,1,1,1]=>1
[1,1,1,1,2]=>5
[1,1,1,2,1]=>14
[1,1,1,3]=>10
[1,1,2,1,1]=>19
[1,1,2,2]=>35
[1,1,3,1]=>26
[1,1,4]=>10
[1,2,1,1,1]=>14
[1,2,1,2]=>40
[1,2,2,1]=>61
[1,2,3]=>35
[1,3,1,1]=>26
[1,3,2]=>40
[1,4,1]=>19
[1,5]=>5
[2,1,1,1,1]=>5
[2,1,1,2]=>19
[2,1,2,1]=>40
[2,1,3]=>26
[2,2,1,1]=>35
[2,2,2]=>61
[2,3,1]=>40
[2,4]=>14
[3,1,1,1]=>10
[3,1,2]=>26
[3,2,1]=>35
[3,3]=>19
[4,1,1]=>10
[4,2]=>14
[5,1]=>5
[6]=>1
[1,1,1,1,1,1,1]=>1
[1,1,1,1,1,2]=>6
[1,1,1,1,2,1]=>20
[1,1,1,1,3]=>15
[1,1,1,2,1,1]=>34
[1,1,1,2,2]=>64
[1,1,1,3,1]=>50
[1,1,1,4]=>20
[1,1,2,1,1,1]=>34
[1,1,2,1,2]=>99
[1,1,2,2,1]=>155
[1,1,2,3]=>90
[1,1,3,1,1]=>71
[1,1,3,2]=>111
[1,1,4,1]=>55
[1,1,5]=>15
[1,2,1,1,1,1]=>20
[1,2,1,1,2]=>78
[1,2,1,2,1]=>169
[1,2,1,3]=>111
[1,2,2,1,1]=>155
[1,2,2,2]=>272
[1,2,3,1]=>181
[1,2,4]=>64
[1,3,1,1,1]=>50
[1,3,1,2]=>132
[1,3,2,1]=>181
[1,3,3]=>99
[1,4,1,1]=>55
[1,4,2]=>78
[1,5,1]=>29
[1,6]=>6
[2,1,1,1,1,1]=>6
[2,1,1,1,2]=>29
[2,1,1,2,1]=>78
[2,1,1,3]=>55
[2,1,2,1,1]=>99
[2,1,2,2]=>181
[2,1,3,1]=>132
[2,1,4]=>50
[2,2,1,1,1]=>64
[2,2,1,2]=>181
[2,2,2,1]=>272
[2,2,3]=>155
[2,3,1,1]=>111
[2,3,2]=>169
[2,4,1]=>78
[2,5]=>20
[3,1,1,1,1]=>15
[3,1,1,2]=>55
[3,1,2,1]=>111
[3,1,3]=>71
[3,2,1,1]=>90
[3,2,2]=>155
[3,3,1]=>99
[3,4]=>34
[4,1,1,1]=>20
[4,1,2]=>50
[4,2,1]=>64
[4,3]=>34
[5,1,1]=>15
[5,2]=>20
[6,1]=>6
[7]=>1
[1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,2]=>7
[1,1,1,1,1,2,1]=>27
[1,1,1,1,1,3]=>21
[1,1,1,1,2,1,1]=>55
[1,1,1,1,2,2]=>105
[1,1,1,1,3,1]=>85
[1,1,1,1,4]=>35
[1,1,1,2,1,1,1]=>69
[1,1,1,2,1,2]=>203
[1,1,1,2,2,1]=>323
[1,1,1,2,3]=>189
[1,1,1,3,1,1]=>155
[1,1,1,3,2]=>245
[1,1,1,4,1]=>125
[1,1,1,5]=>35
[1,1,2,1,1,1,1]=>55
[1,1,2,1,1,2]=>217
[1,1,2,1,2,1]=>477
[1,1,2,1,3]=>315
[1,1,2,2,1,1]=>449
[1,1,2,2,2]=>791
[1,1,2,3,1]=>531
[1,1,2,4]=>189
[1,1,3,1,1,1]=>155
[1,1,3,1,2]=>413
[1,1,3,2,1]=>573
[1,1,3,3]=>315
[1,1,4,1,1]=>181
[1,1,4,2]=>259
[1,1,5,1]=>99
[1,1,6]=>21
[1,2,1,1,1,1,1]=>27
[1,2,1,1,1,2]=>133
[1,2,1,1,2,1]=>365
[1,2,1,1,3]=>259
[1,2,1,2,1,1]=>477
[1,2,1,2,2]=>875
[1,2,1,3,1]=>643
[1,2,1,4]=>245
[1,2,2,1,1,1]=>323
[1,2,2,1,2]=>917
[1,2,2,2,1]=>1385
[1,2,2,3]=>791
[1,2,3,1,1]=>573
[1,2,3,2]=>875
[1,2,4,1]=>407
[1,2,5]=>105
[1,3,1,1,1,1]=>85
[1,3,1,1,2]=>315
[1,3,1,2,1]=>643
[1,3,1,3]=>413
[1,3,2,1,1]=>531
[1,3,2,2]=>917
[1,3,3,1]=>589
[1,3,4]=>203
[1,4,1,1,1]=>125
[1,4,1,2]=>315
[1,4,2,1]=>407
[1,4,3]=>217
[1,5,1,1]=>99
[1,5,2]=>133
[1,6,1]=>41
[1,7]=>7
[2,1,1,1,1,1,1]=>7
[2,1,1,1,1,2]=>41
[2,1,1,1,2,1]=>133
[2,1,1,1,3]=>99
[2,1,1,2,1,1]=>217
[2,1,1,2,2]=>407
[2,1,1,3,1]=>315
[2,1,1,4]=>125
[2,1,2,1,1,1]=>203
[2,1,2,1,2]=>589
[2,1,2,2,1]=>917
[2,1,2,3]=>531
[2,1,3,1,1]=>413
[2,1,3,2]=>643
[2,1,4,1]=>315
[2,1,5]=>85
[2,2,1,1,1,1]=>105
[2,2,1,1,2]=>407
[2,2,1,2,1]=>875
[2,2,1,3]=>573
[2,2,2,1,1]=>791
[2,2,2,2]=>1385
[2,2,3,1]=>917
[2,2,4]=>323
[2,3,1,1,1]=>245
[2,3,1,2]=>643
[2,3,2,1]=>875
[2,3,3]=>477
[2,4,1,1]=>259
[2,4,2]=>365
[2,5,1]=>133
[2,6]=>27
[3,1,1,1,1,1]=>21
[3,1,1,1,2]=>99
[3,1,1,2,1]=>259
[3,1,1,3]=>181
[3,1,2,1,1]=>315
[3,1,2,2]=>573
[3,1,3,1]=>413
[3,1,4]=>155
[3,2,1,1,1]=>189
[3,2,1,2]=>531
[3,2,2,1]=>791
[3,2,3]=>449
[3,3,1,1]=>315
[3,3,2]=>477
[3,4,1]=>217
[3,5]=>55
[4,1,1,1,1]=>35
[4,1,1,2]=>125
[4,1,2,1]=>245
[4,1,3]=>155
[4,2,1,1]=>189
[4,2,2]=>323
[4,3,1]=>203
[4,4]=>69
[5,1,1,1]=>35
[5,1,2]=>85
[5,2,1]=>105
[5,3]=>55
[6,1,1]=>21
[6,2]=>27
[7,1]=>7
[8]=>1
[1,1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,2]=>8
[1,1,1,1,1,1,2,1]=>35
[1,1,1,1,1,1,3]=>28
[1,1,1,1,1,2,1,1]=>83
[1,1,1,1,1,2,2]=>160
[1,1,1,1,1,3,1]=>133
[1,1,1,1,1,4]=>56
[1,1,1,1,2,1,1,1]=>125
[1,1,1,1,2,1,2]=>370
[1,1,1,1,2,2,1]=>595
[1,1,1,1,2,3]=>350
[1,1,1,1,3,1,1]=>295
[1,1,1,1,3,2]=>470
[1,1,1,1,4,1]=>245
[1,1,1,1,5]=>70
[1,1,1,2,1,1,1,1]=>125
[1,1,1,2,1,1,2]=>496
[1,1,1,2,1,2,1]=>1099
[1,1,1,2,1,3]=>728
[1,1,1,2,2,1,1]=>1051
[1,1,1,2,2,2]=>1856
[1,1,1,2,3,1]=>1253
[1,1,1,2,4]=>448
[1,1,1,3,1,1,1]=>379
[1,1,1,3,1,2]=>1016
[1,1,1,3,2,1]=>1421
[1,1,1,3,3]=>784
[1,1,1,4,1,1]=>461
[1,1,1,4,2]=>664
[1,1,1,5,1]=>259
[1,1,1,6]=>56
[1,1,2,1,1,1,1,1]=>83
[1,1,2,1,1,1,2]=>412
[1,1,2,1,1,2,1]=>1141
[1,1,2,1,1,3]=>812
[1,1,2,1,2,1,1]=>1513
[1,1,2,1,2,2]=>2780
[1,1,2,1,3,1]=>2051
[1,1,2,1,4]=>784
[1,1,2,2,1,1,1]=>1051
[1,1,2,2,1,2]=>2990
[1,1,2,2,2,1]=>4529
[1,1,2,2,3]=>2590
[1,1,2,3,1,1]=>1889
[1,1,2,3,2]=>2890
[1,1,2,4,1]=>1351
[1,1,2,5]=>350
[1,1,3,1,1,1,1]=>295
[1,1,3,1,1,2]=>1100
[1,1,3,1,2,1]=>2261
[1,1,3,1,3]=>1456
[1,1,3,2,1,1]=>1889
[1,1,3,2,2]=>3268
[1,1,3,3,1]=>2107
[1,1,3,4]=>728
[1,1,4,1,1,1]=>461
[1,1,4,1,2]=>1168
[1,1,4,2,1]=>1519
[1,1,4,3]=>812
[1,1,5,1,1]=>379
[1,1,5,2]=>512
[1,1,6,1]=>161
[1,1,7]=>28
[1,2,1,1,1,1,1,1]=>35
[1,2,1,1,1,1,2]=>208
[1,2,1,1,1,2,1]=>685
[1,2,1,1,1,3]=>512
[1,2,1,1,2,1,1]=>1141
[1,2,1,1,2,2]=>2144
[1,2,1,1,3,1]=>1667
[1,2,1,1,4]=>664
[1,2,1,2,1,1,1]=>1099
[1,2,1,2,1,2]=>3194
[1,2,1,2,2,1]=>4985
[1,2,1,2,3]=>2890
[1,2,1,3,1,1]=>2261
[1,2,1,3,2]=>3526
[1,2,1,4,1]=>1735
[1,2,1,5]=>470
[1,2,2,1,1,1,1]=>595
[1,2,2,1,1,2]=>2312
[1,2,2,1,2,1]=>4985
[1,2,2,1,3]=>3268
[1,2,2,2,1,1]=>4529
[1,2,2,2,2]=>7936
[1,2,2,3,1]=>5263
[1,2,2,4]=>1856
[1,2,3,1,1,1]=>1421
[1,2,3,1,2]=>3736
[1,2,3,2,1]=>5095
[1,2,3,3]=>2780
[1,2,4,1,1]=>1519
[1,2,4,2]=>2144
[1,2,5,1]=>785
[1,2,6]=>160
[1,3,1,1,1,1,1]=>133
[1,3,1,1,1,2]=>632
[1,3,1,1,2,1]=>1667
[1,3,1,1,3]=>1168
[1,3,1,2,1,1]=>2051
[1,3,1,2,2]=>3736
[1,3,1,3,1]=>2701
[1,3,1,4]=>1016
[1,3,2,1,1,1]=>1253
[1,3,2,1,2]=>3526
[1,3,2,2,1]=>5263
[1,3,2,3]=>2990
[1,3,3,1,1]=>2107
[1,3,3,2]=>3194
[1,3,4,1]=>1457
[1,3,5]=>370
[1,4,1,1,1,1]=>245
[1,4,1,1,2]=>880
[1,4,1,2,1]=>1735
[1,4,1,3]=>1100
[1,4,2,1,1]=>1351
[1,4,2,2]=>2312
[1,4,3,1]=>1457
[1,4,4]=>496
[1,5,1,1,1]=>259
[1,5,1,2]=>632
[1,5,2,1]=>785
[1,5,3]=>412
[1,6,1,1]=>161
[1,6,2]=>208
[1,7,1]=>55
[1,8]=>8
[2,1,1,1,1,1,1,1]=>8
[2,1,1,1,1,1,2]=>55
[2,1,1,1,1,2,1]=>208
[2,1,1,1,1,3]=>161
[2,1,1,1,2,1,1]=>412
[2,1,1,1,2,2]=>785
[2,1,1,1,3,1]=>632
[2,1,1,1,4]=>259
[2,1,1,2,1,1,1]=>496
[2,1,1,2,1,2]=>1457
[2,1,1,2,2,1]=>2312
[2,1,1,2,3]=>1351
[2,1,1,3,1,1]=>1100
[2,1,1,3,2]=>1735
[2,1,1,4,1]=>880
[2,1,1,5]=>245
[2,1,2,1,1,1,1]=>370
[2,1,2,1,1,2]=>1457
[2,1,2,1,2,1]=>3194
[2,1,2,1,3]=>2107
[2,1,2,2,1,1]=>2990
[2,1,2,2,2]=>5263
[2,1,2,3,1]=>3526
[2,1,2,4]=>1253
[2,1,3,1,1,1]=>1016
[2,1,3,1,2]=>2701
[2,1,3,2,1]=>3736
[2,1,3,3]=>2051
[2,1,4,1,1]=>1168
[2,1,4,2]=>1667
[2,1,5,1]=>632
[2,1,6]=>133
[2,2,1,1,1,1,1]=>160
[2,2,1,1,1,2]=>785
[2,2,1,1,2,1]=>2144
[2,2,1,1,3]=>1519
[2,2,1,2,1,1]=>2780
[2,2,1,2,2]=>5095
[2,2,1,3,1]=>3736
[2,2,1,4]=>1421
[2,2,2,1,1,1]=>1856
[2,2,2,1,2]=>5263
[2,2,2,2,1]=>7936
[2,2,2,3]=>4529
[2,2,3,1,1]=>3268
[2,2,3,2]=>4985
[2,2,4,1]=>2312
[2,2,5]=>595
[2,3,1,1,1,1]=>470
[2,3,1,1,2]=>1735
[2,3,1,2,1]=>3526
[2,3,1,3]=>2261
[2,3,2,1,1]=>2890
[2,3,2,2]=>4985
[2,3,3,1]=>3194
[2,3,4]=>1099
[2,4,1,1,1]=>664
[2,4,1,2]=>1667
[2,4,2,1]=>2144
[2,4,3]=>1141
[2,5,1,1]=>512
[2,5,2]=>685
[2,6,1]=>208
[2,7]=>35
[3,1,1,1,1,1,1]=>28
[3,1,1,1,1,2]=>161
[3,1,1,1,2,1]=>512
[3,1,1,1,3]=>379
[3,1,1,2,1,1]=>812
[3,1,1,2,2]=>1519
[3,1,1,3,1]=>1168
[3,1,1,4]=>461
[3,1,2,1,1,1]=>728
[3,1,2,1,2]=>2107
[3,1,2,2,1]=>3268
[3,1,2,3]=>1889
[3,1,3,1,1]=>1456
[3,1,3,2]=>2261
[3,1,4,1]=>1100
[3,1,5]=>295
[3,2,1,1,1,1]=>350
[3,2,1,1,2]=>1351
[3,2,1,2,1]=>2890
[3,2,1,3]=>1889
[3,2,2,1,1]=>2590
[3,2,2,2]=>4529
[3,2,3,1]=>2990
[3,2,4]=>1051
[3,3,1,1,1]=>784
[3,3,1,2]=>2051
[3,3,2,1]=>2780
[3,3,3]=>1513
[3,4,1,1]=>812
[3,4,2]=>1141
[3,5,1]=>412
[3,6]=>83
[4,1,1,1,1,1]=>56
[4,1,1,1,2]=>259
[4,1,1,2,1]=>664
[4,1,1,3]=>461
[4,1,2,1,1]=>784
[4,1,2,2]=>1421
[4,1,3,1]=>1016
[4,1,4]=>379
[4,2,1,1,1]=>448
[4,2,1,2]=>1253
[4,2,2,1]=>1856
[4,2,3]=>1051
[4,3,1,1]=>728
[4,3,2]=>1099
[4,4,1]=>496
[4,5]=>125
[5,1,1,1,1]=>70
[5,1,1,2]=>245
[5,1,2,1]=>470
[5,1,3]=>295
[5,2,1,1]=>350
[5,2,2]=>595
[5,3,1]=>370
[5,4]=>125
[6,1,1,1]=>56
[6,1,2]=>133
[6,2,1]=>160
[6,3]=>83
[7,1,1]=>28
[7,2]=>35
[8,1]=>8
[9]=>1
[1,1,1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,2,2]=>231
[1,1,1,1,2,1,1,2]=>999
[1,1,1,1,2,2,1,1]=>2149
[1,1,1,1,3,3]=>1674
[1,1,1,1,5,1]=>574
[1,1,2,1,1,1,1,2]=>711
[1,1,2,1,1,2,1,1]=>3961
[1,1,2,1,2,3]=>10206
[1,1,2,2,1,1,1,1]=>2149
[1,1,2,2,2,2]=>28839
[1,1,3,1,1,3]=>4536
[1,1,3,2,1,2]=>13941
[1,1,3,3,1,1]=>8371
[1,1,4,4]=>2064
[1,1,7,1]=>244
[1,2,1,1,4,1]=>5191
[1,2,6,1]=>1369
[1,3,1,1,3,1]=>8371
[1,3,5,1]=>3079
[1,4,1,1,2,1]=>5191
[1,4,4,1]=>3961
[1,5,1,1,1,1]=>574
[1,5,3,1]=>3079
[1,6,1,2]=>1134
[1,6,2,1]=>1369
[1,7,1,1]=>244
[1,8,1]=>71
[1,9]=>9
[2,1,1,1,1,1,1,2]=>71
[2,1,1,1,1,2,1,1]=>711
[2,1,1,1,2,3]=>2906
[2,1,1,2,1,1,1,1]=>999
[2,1,1,2,2,2]=>14759
[2,1,2,1,1,3]=>6056
[2,1,2,2,1,2]=>22121
[2,1,2,3,1,1]=>13941
[2,1,3,4]=>5264
[2,1,6,1]=>1134
[2,2,1,1,1,1,1,1]=>231
[2,2,1,1,2,2]=>13991
[2,2,2,1,1,2]=>14759
[2,2,2,2,1,1]=>28839
[2,2,3,3]=>17594
[3,1,1,1,1,3]=>701
[3,1,1,2,1,2]=>6056
[3,1,1,3,1,1]=>4536
[3,1,2,4]=>4949
[3,2,1,1,1,2]=>2906
[3,2,1,2,1,1]=>10206
[3,2,2,3]=>16451
[3,3,1,1,1,1]=>1674
[3,3,2,2]=>17594
[4,1,1,4]=>1301
[4,2,1,3]=>4949
[4,3,1,2]=>5264
[4,4,1,1]=>2064
[5,5]=>251
[8,1,1]=>36
[9,1]=>9
[1,10]=>10
[1,8,1,1]=>351
[1,7,2,1]=>2221
[1,6,3,1]=>5851
[1,5,4,1]=>9151
[1,4,5,1]=>9151
[1,3,6,1]=>5851
[1,2,7,1]=>2221
[1,1,8,1]=>351
[10,1]=>10
[1,1,1,1,1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1,2,2]=>429
[1,1,1,1,1,1,2,2,1,1]=>6909
[1,1,1,1,1,1,2,1,1,2]=>3157
[1,1,1,1,1,1,3,3]=>5698
[1,1,1,1,2,2,1,1,1,1]=>15049
[1,1,1,1,2,2,2,2]=>203181
[1,1,1,1,2,1,1,2,1,1]=>26709
[1,1,1,1,2,1,1,1,1,2]=>4741
[1,1,1,1,2,1,2,3]=>69850
[1,1,1,1,3,3,1,1]=>65154
[1,1,1,1,3,2,1,2]=>107866
[1,1,1,1,3,1,1,3]=>34375
[1,1,1,1,4,4]=>16995
[1,1,2,2,1,1,1,1,1,1]=>6909
[1,1,2,2,1,1,2,2]=>421421
[1,1,2,2,2,2,1,1]=>880529
[1,1,2,2,2,1,1,2]=>450021
[1,1,2,2,3,3]=>538890
[1,1,2,1,1,2,1,1,1,1]=>26709
[1,1,2,1,1,2,2,2]=>396077
[1,1,2,1,1,1,1,2,1,1]=>18041
[1,1,2,1,1,1,1,1,1,2]=>1749
[1,1,2,1,1,1,2,3]=>75570
[1,1,2,1,2,3,1,1]=>392822
[1,1,2,1,2,2,1,2]=>622314
[1,1,2,1,2,1,1,3]=>169455
[1,1,2,1,3,4]=>150227
[1,1,3,3,1,1,1,1]=>65154
[1,1,3,3,2,2]=>686906
[1,1,3,2,1,2,1,1]=>392822
[1,1,3,2,1,1,1,2]=>111474
[1,1,3,2,2,3]=>635745
[1,1,3,1,1,3,1,1]=>166541
[1,1,3,1,1,2,1,2]=>221529
[1,1,3,1,1,1,1,3]=>25080
[1,1,3,1,2,4]=>185108
[1,1,4,4,1,1]=>90509
[1,1,4,3,1,2]=>230241
[1,1,4,2,1,3]=>215160
[1,1,4,1,1,4]=>55220
[1,1,5,5]=>11825
[2,2,1,1,1,1,1,1,1,1]=>429
[2,2,1,1,1,1,2,2]=>66989
[2,2,1,1,2,2,1,1]=>421421
[2,2,1,1,2,1,1,2]=>199341
[2,2,1,1,3,3]=>312102
[2,2,2,2,1,1,1,1]=>203181
[2,2,2,2,2,2]=>2702765
[2,2,2,1,1,2,1,1]=>396077
[2,2,2,1,1,1,1,2]=>72621
[2,2,2,1,2,3]=>996390
[2,2,3,3,1,1]=>686906
[2,2,3,2,1,2]=>1152546
[2,2,3,1,1,3]=>385395
[2,2,4,4]=>157475
[2,1,1,2,1,1,1,1,1,1]=>3157
[2,1,1,2,1,1,2,2]=>199341
[2,1,1,2,2,2,1,1]=>450021
[2,1,1,2,2,1,1,2]=>228205
[2,1,1,2,3,3]=>280774
[2,1,1,1,1,2,1,1,1,1]=>4741
[2,1,1,1,1,2,2,2]=>72621
[2,1,1,1,1,1,1,2,1,1]=>1749
[2,1,1,1,1,1,1,1,1,2]=>109
[2,1,1,1,1,1,2,3]=>9910
[2,1,1,1,2,3,1,1]=>111474
[2,1,1,1,2,2,1,2]=>174514
[2,1,1,1,2,1,1,3]=>45715
[2,1,1,1,3,4]=>46947
[2,1,2,3,1,1,1,1]=>107866
[2,1,2,3,2,2]=>1152546
[2,1,2,2,1,2,1,1]=>622314
[2,1,2,2,1,1,1,2]=>174514
[2,1,2,2,2,3]=>1022845
[2,1,2,1,1,3,1,1]=>221529
[2,1,2,1,1,2,1,2]=>291169
[2,1,2,1,1,1,1,3]=>30700
[2,1,2,1,2,4]=>262932
[2,1,3,4,1,1]=>230241
[2,1,3,3,1,2]=>578665
[2,1,3,2,1,3]=>527284
[2,1,3,1,1,4]=>123540
[2,1,4,5]=>39225
[3,3,1,1,1,1,1,1]=>5698
[3,3,1,1,2,2]=>312102
[3,3,2,2,1,1]=>538890
[3,3,2,1,1,2]=>280774
[3,3,3,3]=>315523
[3,2,1,2,1,1,1,1]=>69850
[3,2,1,2,2,2]=>996390
[3,2,1,1,1,2,1,1]=>75570
[3,2,1,1,1,1,1,2]=>9910
[3,2,1,1,2,3]=>251371
[3,2,2,3,1,1]=>635745
[3,2,2,2,1,2]=>1022845
[3,2,2,1,1,3]=>294106
[3,2,3,4]=>215346
[3,1,1,3,1,1,1,1]=>34375
[3,1,1,3,2,2]=>385395
[3,1,1,2,1,2,1,1]=>169455
[3,1,1,2,1,1,1,2]=>45715
[3,1,1,2,2,3]=>294106
[3,1,1,1,1,3,1,1]=>25080
[3,1,1,1,1,2,1,2]=>30700
[3,1,1,1,1,1,1,3]=>1891
[3,1,1,1,2,4]=>43251
[3,1,2,4,1,1]=>215160
[3,1,2,3,1,2]=>527284
[3,1,2,2,1,3]=>458083
[3,1,2,1,1,4]=>90771
[3,1,3,5]=>54966
[4,4,1,1,1,1]=>16995
[4,4,2,2]=>157475
[4,3,1,2,1,1]=>150227
[4,3,1,1,1,2]=>46947
[4,3,2,3]=>215346
[4,2,1,3,1,1]=>185108
[4,2,1,2,1,2]=>262932
[4,2,1,1,1,3]=>43251
[4,2,2,4]=>147443
[4,1,1,4,1,1]=>55220
[4,1,1,3,1,2]=>123540
[4,1,1,2,1,3]=>90771
[4,1,1,1,1,4]=>8051
[4,1,2,5]=>36926
[5,5,1,1]=>11825
[5,4,1,2]=>39225
[5,3,1,3]=>54966
[5,2,1,4]=>36926
[5,1,1,5]=>8051
[6,6]=>923
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of ribbon shaped standard tableaux.
A ribbon is a connected skew shape which does not contain a $2\times 2$ square. The set of ribbon shapes are therefore in bijection with integer compositons, the parts of the composition specify the row lengths. This statistic records the number of standard tableaux of the given shape.
This is also the size of the preimage of the map 'descent composition' Mp00071descent composition from permutations to integer compositions: reading a tableau from bottom to top we obtain a permutation whose descent set is as prescribed.
For a composition $c=c_1,\dots,c_k$ of $n$, the number of ribbon shaped standard tableaux equals
$$ \sum_d (-1)^{k-\ell} \binom{n}{d_1, d_2, \dots, d_\ell}, $$
where the sum is over all coarsenings of $c$ obtained by replacing consecutive summands by their sum, see [sec 14.4, 1]
A ribbon is a connected skew shape which does not contain a $2\times 2$ square. The set of ribbon shapes are therefore in bijection with integer compositons, the parts of the composition specify the row lengths. This statistic records the number of standard tableaux of the given shape.
This is also the size of the preimage of the map 'descent composition' Mp00071descent composition from permutations to integer compositions: reading a tableau from bottom to top we obtain a permutation whose descent set is as prescribed.
For a composition $c=c_1,\dots,c_k$ of $n$, the number of ribbon shaped standard tableaux equals
$$ \sum_d (-1)^{k-\ell} \binom{n}{d_1, d_2, \dots, d_\ell}, $$
where the sum is over all coarsenings of $c$ obtained by replacing consecutive summands by their sum, see [sec 14.4, 1]
References
[1] Stanley, R. P. Enumerative combinatorics. Volume 1 MathSciNet:2868112
Code
def composition_to_ribbon(c): inner = [] outer = [] indent = 0 for p in reversed(c): if indent > 0: inner.append(indent) outer.append(p+indent) indent += p-1 return SkewPartition([outer[::-1], inner[::-1]]) def statistic(c): return StandardSkewTableaux(composition_to_ribbon(c)).cardinality() # alternative implementation def descents_composition(elt): if len(elt) == 0: return Composition([]) d = [-1] + elt.descents() + [len(elt)-1] return Composition([ d[i+1]-d[i] for i in range(len(d)-1)]) @cached_function def preimages(level): result = dict() for el in Permutations(level): image = descents_composition(el) result[image] = result.get(image, 0) + 1 return result def statistic(x): return preimages(x.size()).get(x, 0)
Created
Sep 11, 2015 at 21:12 by Martin Rubey
Updated
May 20, 2021 at 17:25 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!