Identifier
Values
0 => [2] => 1
1 => [1,1] => 1
00 => [3] => 1
01 => [2,1] => 2
10 => [1,2] => 2
11 => [1,1,1] => 1
000 => [4] => 1
001 => [3,1] => 3
010 => [2,2] => 5
011 => [2,1,1] => 3
100 => [1,3] => 3
101 => [1,2,1] => 5
110 => [1,1,2] => 3
111 => [1,1,1,1] => 1
0000 => [5] => 1
0001 => [4,1] => 4
0010 => [3,2] => 9
0011 => [3,1,1] => 6
0100 => [2,3] => 9
0101 => [2,2,1] => 16
0110 => [2,1,2] => 11
0111 => [2,1,1,1] => 4
1000 => [1,4] => 4
1001 => [1,3,1] => 11
1010 => [1,2,2] => 16
1011 => [1,2,1,1] => 9
1100 => [1,1,3] => 6
1101 => [1,1,2,1] => 9
1110 => [1,1,1,2] => 4
1111 => [1,1,1,1,1] => 1
00000 => [6] => 1
00001 => [5,1] => 5
00010 => [4,2] => 14
00011 => [4,1,1] => 10
00100 => [3,3] => 19
00101 => [3,2,1] => 35
00110 => [3,1,2] => 26
00111 => [3,1,1,1] => 10
01000 => [2,4] => 14
01001 => [2,3,1] => 40
01010 => [2,2,2] => 61
01011 => [2,2,1,1] => 35
01100 => [2,1,3] => 26
01101 => [2,1,2,1] => 40
01110 => [2,1,1,2] => 19
01111 => [2,1,1,1,1] => 5
10000 => [1,5] => 5
10001 => [1,4,1] => 19
10010 => [1,3,2] => 40
10011 => [1,3,1,1] => 26
10100 => [1,2,3] => 35
10101 => [1,2,2,1] => 61
10110 => [1,2,1,2] => 40
10111 => [1,2,1,1,1] => 14
11000 => [1,1,4] => 10
11001 => [1,1,3,1] => 26
11010 => [1,1,2,2] => 35
11011 => [1,1,2,1,1] => 19
11100 => [1,1,1,3] => 10
11101 => [1,1,1,2,1] => 14
11110 => [1,1,1,1,2] => 5
11111 => [1,1,1,1,1,1] => 1
000000 => [7] => 1
000001 => [6,1] => 6
000010 => [5,2] => 20
000011 => [5,1,1] => 15
000100 => [4,3] => 34
000101 => [4,2,1] => 64
000110 => [4,1,2] => 50
000111 => [4,1,1,1] => 20
001000 => [3,4] => 34
001001 => [3,3,1] => 99
001010 => [3,2,2] => 155
001011 => [3,2,1,1] => 90
001100 => [3,1,3] => 71
001101 => [3,1,2,1] => 111
001110 => [3,1,1,2] => 55
001111 => [3,1,1,1,1] => 15
010000 => [2,5] => 20
010001 => [2,4,1] => 78
010010 => [2,3,2] => 169
010011 => [2,3,1,1] => 111
010100 => [2,2,3] => 155
010101 => [2,2,2,1] => 272
010110 => [2,2,1,2] => 181
010111 => [2,2,1,1,1] => 64
011000 => [2,1,4] => 50
011001 => [2,1,3,1] => 132
011010 => [2,1,2,2] => 181
011011 => [2,1,2,1,1] => 99
011100 => [2,1,1,3] => 55
011101 => [2,1,1,2,1] => 78
011110 => [2,1,1,1,2] => 29
011111 => [2,1,1,1,1,1] => 6
100000 => [1,6] => 6
100001 => [1,5,1] => 29
100010 => [1,4,2] => 78
100011 => [1,4,1,1] => 55
100100 => [1,3,3] => 99
100101 => [1,3,2,1] => 181
100110 => [1,3,1,2] => 132
>>> Load all 633 entries. <<<
100111 => [1,3,1,1,1] => 50
101000 => [1,2,4] => 64
101001 => [1,2,3,1] => 181
101010 => [1,2,2,2] => 272
101011 => [1,2,2,1,1] => 155
101100 => [1,2,1,3] => 111
101101 => [1,2,1,2,1] => 169
101110 => [1,2,1,1,2] => 78
101111 => [1,2,1,1,1,1] => 20
110000 => [1,1,5] => 15
110001 => [1,1,4,1] => 55
110010 => [1,1,3,2] => 111
110011 => [1,1,3,1,1] => 71
110100 => [1,1,2,3] => 90
110101 => [1,1,2,2,1] => 155
110110 => [1,1,2,1,2] => 99
110111 => [1,1,2,1,1,1] => 34
111000 => [1,1,1,4] => 20
111001 => [1,1,1,3,1] => 50
111010 => [1,1,1,2,2] => 64
111011 => [1,1,1,2,1,1] => 34
111100 => [1,1,1,1,3] => 15
111101 => [1,1,1,1,2,1] => 20
111110 => [1,1,1,1,1,2] => 6
111111 => [1,1,1,1,1,1,1] => 1
0000000 => [8] => 1
0000001 => [7,1] => 7
0000010 => [6,2] => 27
0000011 => [6,1,1] => 21
0000100 => [5,3] => 55
0000101 => [5,2,1] => 105
0000110 => [5,1,2] => 85
0000111 => [5,1,1,1] => 35
0001000 => [4,4] => 69
0001001 => [4,3,1] => 203
0001010 => [4,2,2] => 323
0001011 => [4,2,1,1] => 189
0001100 => [4,1,3] => 155
0001101 => [4,1,2,1] => 245
0001110 => [4,1,1,2] => 125
0001111 => [4,1,1,1,1] => 35
0010000 => [3,5] => 55
0010001 => [3,4,1] => 217
0010010 => [3,3,2] => 477
0010011 => [3,3,1,1] => 315
0010100 => [3,2,3] => 449
0010101 => [3,2,2,1] => 791
0010110 => [3,2,1,2] => 531
0010111 => [3,2,1,1,1] => 189
0011000 => [3,1,4] => 155
0011001 => [3,1,3,1] => 413
0011010 => [3,1,2,2] => 573
0011011 => [3,1,2,1,1] => 315
0011100 => [3,1,1,3] => 181
0011101 => [3,1,1,2,1] => 259
0011110 => [3,1,1,1,2] => 99
0011111 => [3,1,1,1,1,1] => 21
0100000 => [2,6] => 27
0100001 => [2,5,1] => 133
0100010 => [2,4,2] => 365
0100011 => [2,4,1,1] => 259
0100100 => [2,3,3] => 477
0100101 => [2,3,2,1] => 875
0100110 => [2,3,1,2] => 643
0100111 => [2,3,1,1,1] => 245
0101000 => [2,2,4] => 323
0101001 => [2,2,3,1] => 917
0101010 => [2,2,2,2] => 1385
0101011 => [2,2,2,1,1] => 791
0101100 => [2,2,1,3] => 573
0101101 => [2,2,1,2,1] => 875
0101110 => [2,2,1,1,2] => 407
0101111 => [2,2,1,1,1,1] => 105
0110000 => [2,1,5] => 85
0110001 => [2,1,4,1] => 315
0110010 => [2,1,3,2] => 643
0110011 => [2,1,3,1,1] => 413
0110100 => [2,1,2,3] => 531
0110101 => [2,1,2,2,1] => 917
0110110 => [2,1,2,1,2] => 589
0110111 => [2,1,2,1,1,1] => 203
0111000 => [2,1,1,4] => 125
0111001 => [2,1,1,3,1] => 315
0111010 => [2,1,1,2,2] => 407
0111011 => [2,1,1,2,1,1] => 217
0111100 => [2,1,1,1,3] => 99
0111101 => [2,1,1,1,2,1] => 133
0111110 => [2,1,1,1,1,2] => 41
0111111 => [2,1,1,1,1,1,1] => 7
1000000 => [1,7] => 7
1000001 => [1,6,1] => 41
1000010 => [1,5,2] => 133
1000011 => [1,5,1,1] => 99
1000100 => [1,4,3] => 217
1000101 => [1,4,2,1] => 407
1000110 => [1,4,1,2] => 315
1000111 => [1,4,1,1,1] => 125
1001000 => [1,3,4] => 203
1001001 => [1,3,3,1] => 589
1001010 => [1,3,2,2] => 917
1001011 => [1,3,2,1,1] => 531
1001100 => [1,3,1,3] => 413
1001101 => [1,3,1,2,1] => 643
1001110 => [1,3,1,1,2] => 315
1001111 => [1,3,1,1,1,1] => 85
1010000 => [1,2,5] => 105
1010001 => [1,2,4,1] => 407
1010010 => [1,2,3,2] => 875
1010011 => [1,2,3,1,1] => 573
1010100 => [1,2,2,3] => 791
1010101 => [1,2,2,2,1] => 1385
1010110 => [1,2,2,1,2] => 917
1010111 => [1,2,2,1,1,1] => 323
1011000 => [1,2,1,4] => 245
1011001 => [1,2,1,3,1] => 643
1011010 => [1,2,1,2,2] => 875
1011011 => [1,2,1,2,1,1] => 477
1011100 => [1,2,1,1,3] => 259
1011101 => [1,2,1,1,2,1] => 365
1011110 => [1,2,1,1,1,2] => 133
1011111 => [1,2,1,1,1,1,1] => 27
1100000 => [1,1,6] => 21
1100001 => [1,1,5,1] => 99
1100010 => [1,1,4,2] => 259
1100011 => [1,1,4,1,1] => 181
1100100 => [1,1,3,3] => 315
1100101 => [1,1,3,2,1] => 573
1100110 => [1,1,3,1,2] => 413
1100111 => [1,1,3,1,1,1] => 155
1101000 => [1,1,2,4] => 189
1101001 => [1,1,2,3,1] => 531
1101010 => [1,1,2,2,2] => 791
1101011 => [1,1,2,2,1,1] => 449
1101100 => [1,1,2,1,3] => 315
1101101 => [1,1,2,1,2,1] => 477
1101110 => [1,1,2,1,1,2] => 217
1101111 => [1,1,2,1,1,1,1] => 55
1110000 => [1,1,1,5] => 35
1110001 => [1,1,1,4,1] => 125
1110010 => [1,1,1,3,2] => 245
1110011 => [1,1,1,3,1,1] => 155
1110100 => [1,1,1,2,3] => 189
1110101 => [1,1,1,2,2,1] => 323
1110110 => [1,1,1,2,1,2] => 203
1110111 => [1,1,1,2,1,1,1] => 69
1111000 => [1,1,1,1,4] => 35
1111001 => [1,1,1,1,3,1] => 85
1111010 => [1,1,1,1,2,2] => 105
1111011 => [1,1,1,1,2,1,1] => 55
1111100 => [1,1,1,1,1,3] => 21
1111101 => [1,1,1,1,1,2,1] => 27
1111110 => [1,1,1,1,1,1,2] => 7
1111111 => [1,1,1,1,1,1,1,1] => 1
00000000 => [9] => 1
00000001 => [8,1] => 8
00000010 => [7,2] => 35
00000011 => [7,1,1] => 28
00000100 => [6,3] => 83
00000101 => [6,2,1] => 160
00000110 => [6,1,2] => 133
00000111 => [6,1,1,1] => 56
00001000 => [5,4] => 125
00001001 => [5,3,1] => 370
00001010 => [5,2,2] => 595
00001011 => [5,2,1,1] => 350
00001100 => [5,1,3] => 295
00001101 => [5,1,2,1] => 470
00001110 => [5,1,1,2] => 245
00001111 => [5,1,1,1,1] => 70
00010000 => [4,5] => 125
00010001 => [4,4,1] => 496
00010010 => [4,3,2] => 1099
00010011 => [4,3,1,1] => 728
00010100 => [4,2,3] => 1051
00010101 => [4,2,2,1] => 1856
00010110 => [4,2,1,2] => 1253
00010111 => [4,2,1,1,1] => 448
00011000 => [4,1,4] => 379
00011001 => [4,1,3,1] => 1016
00011010 => [4,1,2,2] => 1421
00011011 => [4,1,2,1,1] => 784
00011100 => [4,1,1,3] => 461
00011101 => [4,1,1,2,1] => 664
00011110 => [4,1,1,1,2] => 259
00011111 => [4,1,1,1,1,1] => 56
00100000 => [3,6] => 83
00100001 => [3,5,1] => 412
00100010 => [3,4,2] => 1141
00100011 => [3,4,1,1] => 812
00100100 => [3,3,3] => 1513
00100101 => [3,3,2,1] => 2780
00100110 => [3,3,1,2] => 2051
00100111 => [3,3,1,1,1] => 784
00101000 => [3,2,4] => 1051
00101001 => [3,2,3,1] => 2990
00101010 => [3,2,2,2] => 4529
00101011 => [3,2,2,1,1] => 2590
00101100 => [3,2,1,3] => 1889
00101101 => [3,2,1,2,1] => 2890
00101110 => [3,2,1,1,2] => 1351
00101111 => [3,2,1,1,1,1] => 350
00110000 => [3,1,5] => 295
00110001 => [3,1,4,1] => 1100
00110010 => [3,1,3,2] => 2261
00110011 => [3,1,3,1,1] => 1456
00110100 => [3,1,2,3] => 1889
00110101 => [3,1,2,2,1] => 3268
00110110 => [3,1,2,1,2] => 2107
00110111 => [3,1,2,1,1,1] => 728
00111000 => [3,1,1,4] => 461
00111001 => [3,1,1,3,1] => 1168
00111010 => [3,1,1,2,2] => 1519
00111011 => [3,1,1,2,1,1] => 812
00111100 => [3,1,1,1,3] => 379
00111101 => [3,1,1,1,2,1] => 512
00111110 => [3,1,1,1,1,2] => 161
00111111 => [3,1,1,1,1,1,1] => 28
01000000 => [2,7] => 35
01000001 => [2,6,1] => 208
01000010 => [2,5,2] => 685
01000011 => [2,5,1,1] => 512
01000100 => [2,4,3] => 1141
01000101 => [2,4,2,1] => 2144
01000110 => [2,4,1,2] => 1667
01000111 => [2,4,1,1,1] => 664
01001000 => [2,3,4] => 1099
01001001 => [2,3,3,1] => 3194
01001010 => [2,3,2,2] => 4985
01001011 => [2,3,2,1,1] => 2890
01001100 => [2,3,1,3] => 2261
01001101 => [2,3,1,2,1] => 3526
01001110 => [2,3,1,1,2] => 1735
01001111 => [2,3,1,1,1,1] => 470
01010000 => [2,2,5] => 595
01010001 => [2,2,4,1] => 2312
01010010 => [2,2,3,2] => 4985
01010011 => [2,2,3,1,1] => 3268
01010100 => [2,2,2,3] => 4529
01010101 => [2,2,2,2,1] => 7936
01010110 => [2,2,2,1,2] => 5263
01010111 => [2,2,2,1,1,1] => 1856
01011000 => [2,2,1,4] => 1421
01011001 => [2,2,1,3,1] => 3736
01011010 => [2,2,1,2,2] => 5095
01011011 => [2,2,1,2,1,1] => 2780
01011100 => [2,2,1,1,3] => 1519
01011101 => [2,2,1,1,2,1] => 2144
01011110 => [2,2,1,1,1,2] => 785
01011111 => [2,2,1,1,1,1,1] => 160
01100000 => [2,1,6] => 133
01100001 => [2,1,5,1] => 632
01100010 => [2,1,4,2] => 1667
01100011 => [2,1,4,1,1] => 1168
01100100 => [2,1,3,3] => 2051
01100101 => [2,1,3,2,1] => 3736
01100110 => [2,1,3,1,2] => 2701
01100111 => [2,1,3,1,1,1] => 1016
01101000 => [2,1,2,4] => 1253
01101001 => [2,1,2,3,1] => 3526
01101010 => [2,1,2,2,2] => 5263
01101011 => [2,1,2,2,1,1] => 2990
01101100 => [2,1,2,1,3] => 2107
01101101 => [2,1,2,1,2,1] => 3194
01101110 => [2,1,2,1,1,2] => 1457
01101111 => [2,1,2,1,1,1,1] => 370
01110000 => [2,1,1,5] => 245
01110001 => [2,1,1,4,1] => 880
01110010 => [2,1,1,3,2] => 1735
01110011 => [2,1,1,3,1,1] => 1100
01110100 => [2,1,1,2,3] => 1351
01110101 => [2,1,1,2,2,1] => 2312
01110110 => [2,1,1,2,1,2] => 1457
01110111 => [2,1,1,2,1,1,1] => 496
01111000 => [2,1,1,1,4] => 259
01111001 => [2,1,1,1,3,1] => 632
01111010 => [2,1,1,1,2,2] => 785
01111011 => [2,1,1,1,2,1,1] => 412
01111100 => [2,1,1,1,1,3] => 161
01111101 => [2,1,1,1,1,2,1] => 208
01111110 => [2,1,1,1,1,1,2] => 55
01111111 => [2,1,1,1,1,1,1,1] => 8
10000000 => [1,8] => 8
10000001 => [1,7,1] => 55
10000010 => [1,6,2] => 208
10000011 => [1,6,1,1] => 161
10000100 => [1,5,3] => 412
10000101 => [1,5,2,1] => 785
10000110 => [1,5,1,2] => 632
10000111 => [1,5,1,1,1] => 259
10001000 => [1,4,4] => 496
10001001 => [1,4,3,1] => 1457
10001010 => [1,4,2,2] => 2312
10001011 => [1,4,2,1,1] => 1351
10001100 => [1,4,1,3] => 1100
10001101 => [1,4,1,2,1] => 1735
10001110 => [1,4,1,1,2] => 880
10001111 => [1,4,1,1,1,1] => 245
10010000 => [1,3,5] => 370
10010001 => [1,3,4,1] => 1457
10010010 => [1,3,3,2] => 3194
10010011 => [1,3,3,1,1] => 2107
10010100 => [1,3,2,3] => 2990
10010101 => [1,3,2,2,1] => 5263
10010110 => [1,3,2,1,2] => 3526
10010111 => [1,3,2,1,1,1] => 1253
10011000 => [1,3,1,4] => 1016
10011001 => [1,3,1,3,1] => 2701
10011010 => [1,3,1,2,2] => 3736
10011011 => [1,3,1,2,1,1] => 2051
10011100 => [1,3,1,1,3] => 1168
10011101 => [1,3,1,1,2,1] => 1667
10011110 => [1,3,1,1,1,2] => 632
10011111 => [1,3,1,1,1,1,1] => 133
10100000 => [1,2,6] => 160
10100001 => [1,2,5,1] => 785
10100010 => [1,2,4,2] => 2144
10100011 => [1,2,4,1,1] => 1519
10100100 => [1,2,3,3] => 2780
10100101 => [1,2,3,2,1] => 5095
10100110 => [1,2,3,1,2] => 3736
10100111 => [1,2,3,1,1,1] => 1421
10101000 => [1,2,2,4] => 1856
10101001 => [1,2,2,3,1] => 5263
10101010 => [1,2,2,2,2] => 7936
10101011 => [1,2,2,2,1,1] => 4529
10101100 => [1,2,2,1,3] => 3268
10101101 => [1,2,2,1,2,1] => 4985
10101110 => [1,2,2,1,1,2] => 2312
10101111 => [1,2,2,1,1,1,1] => 595
10110000 => [1,2,1,5] => 470
10110001 => [1,2,1,4,1] => 1735
10110010 => [1,2,1,3,2] => 3526
10110011 => [1,2,1,3,1,1] => 2261
10110100 => [1,2,1,2,3] => 2890
10110101 => [1,2,1,2,2,1] => 4985
10110110 => [1,2,1,2,1,2] => 3194
10110111 => [1,2,1,2,1,1,1] => 1099
10111000 => [1,2,1,1,4] => 664
10111001 => [1,2,1,1,3,1] => 1667
10111010 => [1,2,1,1,2,2] => 2144
10111011 => [1,2,1,1,2,1,1] => 1141
10111100 => [1,2,1,1,1,3] => 512
10111101 => [1,2,1,1,1,2,1] => 685
10111110 => [1,2,1,1,1,1,2] => 208
10111111 => [1,2,1,1,1,1,1,1] => 35
11000000 => [1,1,7] => 28
11000001 => [1,1,6,1] => 161
11000010 => [1,1,5,2] => 512
11000011 => [1,1,5,1,1] => 379
11000100 => [1,1,4,3] => 812
11000101 => [1,1,4,2,1] => 1519
11000110 => [1,1,4,1,2] => 1168
11000111 => [1,1,4,1,1,1] => 461
11001000 => [1,1,3,4] => 728
11001001 => [1,1,3,3,1] => 2107
11001010 => [1,1,3,2,2] => 3268
11001011 => [1,1,3,2,1,1] => 1889
11001100 => [1,1,3,1,3] => 1456
11001101 => [1,1,3,1,2,1] => 2261
11001110 => [1,1,3,1,1,2] => 1100
11001111 => [1,1,3,1,1,1,1] => 295
11010000 => [1,1,2,5] => 350
11010001 => [1,1,2,4,1] => 1351
11010010 => [1,1,2,3,2] => 2890
11010011 => [1,1,2,3,1,1] => 1889
11010100 => [1,1,2,2,3] => 2590
11010101 => [1,1,2,2,2,1] => 4529
11010110 => [1,1,2,2,1,2] => 2990
11010111 => [1,1,2,2,1,1,1] => 1051
11011000 => [1,1,2,1,4] => 784
11011001 => [1,1,2,1,3,1] => 2051
11011010 => [1,1,2,1,2,2] => 2780
11011011 => [1,1,2,1,2,1,1] => 1513
11011100 => [1,1,2,1,1,3] => 812
11011101 => [1,1,2,1,1,2,1] => 1141
11011110 => [1,1,2,1,1,1,2] => 412
11011111 => [1,1,2,1,1,1,1,1] => 83
11100000 => [1,1,1,6] => 56
11100001 => [1,1,1,5,1] => 259
11100010 => [1,1,1,4,2] => 664
11100011 => [1,1,1,4,1,1] => 461
11100100 => [1,1,1,3,3] => 784
11100101 => [1,1,1,3,2,1] => 1421
11100110 => [1,1,1,3,1,2] => 1016
11100111 => [1,1,1,3,1,1,1] => 379
11101000 => [1,1,1,2,4] => 448
11101001 => [1,1,1,2,3,1] => 1253
11101010 => [1,1,1,2,2,2] => 1856
11101011 => [1,1,1,2,2,1,1] => 1051
11101100 => [1,1,1,2,1,3] => 728
11101101 => [1,1,1,2,1,2,1] => 1099
11101110 => [1,1,1,2,1,1,2] => 496
11101111 => [1,1,1,2,1,1,1,1] => 125
11110000 => [1,1,1,1,5] => 70
11110001 => [1,1,1,1,4,1] => 245
11110010 => [1,1,1,1,3,2] => 470
11110011 => [1,1,1,1,3,1,1] => 295
11110100 => [1,1,1,1,2,3] => 350
11110101 => [1,1,1,1,2,2,1] => 595
11110110 => [1,1,1,1,2,1,2] => 370
11110111 => [1,1,1,1,2,1,1,1] => 125
11111000 => [1,1,1,1,1,4] => 56
11111001 => [1,1,1,1,1,3,1] => 133
11111010 => [1,1,1,1,1,2,2] => 160
11111011 => [1,1,1,1,1,2,1,1] => 83
11111100 => [1,1,1,1,1,1,3] => 28
11111101 => [1,1,1,1,1,1,2,1] => 35
11111110 => [1,1,1,1,1,1,1,2] => 8
11111111 => [1,1,1,1,1,1,1,1,1] => 1
000000001 => [9,1] => 9
000000011 => [8,1,1] => 36
000010000 => [5,5] => 251
000100011 => [4,4,1,1] => 2064
000100110 => [4,3,1,2] => 5264
000101100 => [4,2,1,3] => 4949
000111000 => [4,1,1,4] => 1301
001001010 => [3,3,2,2] => 17594
001001111 => [3,3,1,1,1,1] => 1674
001010100 => [3,2,2,3] => 16451
001011011 => [3,2,1,2,1,1] => 10206
001011110 => [3,2,1,1,1,2] => 2906
001101000 => [3,1,2,4] => 4949
001110011 => [3,1,1,3,1,1] => 4536
001110110 => [3,1,1,2,1,2] => 6056
001111100 => [3,1,1,1,1,3] => 701
010100100 => [2,2,3,3] => 17594
010101011 => [2,2,2,2,1,1] => 28839
010101110 => [2,2,2,1,1,2] => 14759
010111010 => [2,2,1,1,2,2] => 13991
010111111 => [2,2,1,1,1,1,1,1] => 231
011000001 => [2,1,6,1] => 1134
011001000 => [2,1,3,4] => 5264
011010011 => [2,1,2,3,1,1] => 13941
011010110 => [2,1,2,2,1,2] => 22121
011011100 => [2,1,2,1,1,3] => 6056
011101010 => [2,1,1,2,2,2] => 14759
011101111 => [2,1,1,2,1,1,1,1] => 999
011110100 => [2,1,1,1,2,3] => 2906
011111011 => [2,1,1,1,1,2,1,1] => 711
011111110 => [2,1,1,1,1,1,1,2] => 71
100000000 => [1,9] => 9
100000001 => [1,8,1] => 71
100000011 => [1,7,1,1] => 244
100000101 => [1,6,2,1] => 1369
100000110 => [1,6,1,2] => 1134
100001001 => [1,5,3,1] => 3079
100001111 => [1,5,1,1,1,1] => 574
100010001 => [1,4,4,1] => 3961
100011101 => [1,4,1,1,2,1] => 5191
100100001 => [1,3,5,1] => 3079
100111001 => [1,3,1,1,3,1] => 8371
101000001 => [1,2,6,1] => 1369
101110001 => [1,2,1,1,4,1] => 5191
110000001 => [1,1,7,1] => 244
110001000 => [1,1,4,4] => 2064
110010011 => [1,1,3,3,1,1] => 8371
110010110 => [1,1,3,2,1,2] => 13941
110011100 => [1,1,3,1,1,3] => 4536
110101010 => [1,1,2,2,2,2] => 28839
110101111 => [1,1,2,2,1,1,1,1] => 2149
110110100 => [1,1,2,1,2,3] => 10206
110111011 => [1,1,2,1,1,2,1,1] => 3961
110111110 => [1,1,2,1,1,1,1,2] => 711
111100001 => [1,1,1,1,5,1] => 574
111100100 => [1,1,1,1,3,3] => 1674
111101011 => [1,1,1,1,2,2,1,1] => 2149
111101110 => [1,1,1,1,2,1,1,2] => 999
111111010 => [1,1,1,1,1,1,2,2] => 231
111111111 => [1,1,1,1,1,1,1,1,1,1] => 1
1100000001 => [1,1,8,1] => 351
1010000001 => [1,2,7,1] => 2221
1000001001 => [1,6,3,1] => 5851
1000000101 => [1,7,2,1] => 2221
1000000011 => [1,8,1,1] => 351
1000000000 => [1,10] => 10
11011111110 => [1,1,2,1,1,1,1,1,1,2] => 1749
11110111110 => [1,1,1,1,2,1,1,1,1,2] => 4741
11111101110 => [1,1,1,1,1,1,2,1,1,2] => 3157
11010101110 => [1,1,2,2,2,1,1,2] => 450021
11111111010 => [1,1,1,1,1,1,1,1,2,2] => 429
=> [1] => 1
0000000001 => [10,1] => 10
11010100100 => [1,1,2,2,3,3] => 538890
11001010100 => [1,1,3,2,2,3] => 635745
00101010011 => [3,2,2,3,1,1] => 635745
00100101011 => [3,3,2,2,1,1] => 538890
01111111110 => [2,1,1,1,1,1,1,1,1,2] => 109
01010101010 => [2,2,2,2,2,2] => 2702765
01010001000 => [2,2,4,4] => 157475
00100100100 => [3,3,3,3] => 315523
00101001000 => [3,2,3,4] => 215346
00010001010 => [4,4,2,2] => 157475
00010010100 => [4,3,2,3] => 215346
00010101000 => [4,2,2,4] => 147443
00000100000 => [6,6] => 923
01011111111 => [2,2,1,1,1,1,1,1,1,1] => 429
01111111011 => [2,1,1,1,1,1,1,2,1,1] => 1749
11111111111 => [1,1,1,1,1,1,1,1,1,1,1,1] => 1
01010111011 => [2,2,2,1,1,2,1,1] => 396077
01011101110 => [2,2,1,1,2,1,1,2] => 199341
01011101011 => [2,2,1,1,2,2,1,1] => 421421
01101110110 => [2,1,2,1,1,2,1,2] => 291169
01101011011 => [2,1,2,2,1,2,1,1] => 622314
01110111010 => [2,1,1,2,1,1,2,2] => 199341
01110101110 => [2,1,1,2,2,1,1,2] => 228205
01110101011 => [2,1,1,2,2,2,1,1] => 450021
01111101111 => [2,1,1,1,1,2,1,1,1,1] => 4741
11011101010 => [1,1,2,1,1,2,2,2] => 396077
11011111011 => [1,1,2,1,1,1,1,2,1,1] => 18041
11011010110 => [1,1,2,1,2,2,1,2] => 622314
11010111010 => [1,1,2,2,1,1,2,2] => 421421
11010101011 => [1,1,2,2,2,2,1,1] => 880529
11011101111 => [1,1,2,1,1,2,1,1,1,1] => 26709
11110111011 => [1,1,1,1,2,1,1,2,1,1] => 26709
11110101111 => [1,1,1,1,2,2,1,1,1,1] => 15049
00101111110 => [3,2,1,1,1,1,1,2] => 9910
00111011110 => [3,1,1,2,1,1,1,2] => 45715
00111110110 => [3,1,1,1,1,2,1,2] => 30700
00111111100 => [3,1,1,1,1,1,1,3] => 1891
01101010100 => [2,1,2,2,2,3] => 1022845
01101001010 => [2,1,2,3,2,2] => 1152546
01010101111 => [2,2,2,2,1,1,1,1] => 203181
11011110100 => [1,1,2,1,1,1,2,3] => 75570
01010110100 => [2,2,2,1,2,3] => 996390
01110111111 => [2,1,1,2,1,1,1,1,1,1] => 3157
11110001000 => [1,1,1,1,4,4] => 16995
11000111000 => [1,1,4,1,1,4] => 55220
11000100011 => [1,1,4,4,1,1] => 90509
00011111000 => [4,1,1,1,1,4] => 8051
00011100011 => [4,1,1,4,1,1] => 55220
00010001111 => [4,4,1,1,1,1] => 16995
01011111010 => [2,2,1,1,1,1,2,2] => 66989
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of ribbon shaped standard tableaux.
A ribbon is a connected skew shape which does not contain a $2\times 2$ square. The set of ribbon shapes are therefore in bijection with integer compositons, the parts of the composition specify the row lengths. This statistic records the number of standard tableaux of the given shape.
This is also the size of the preimage of the map 'descent composition' Mp00071descent composition from permutations to integer compositions: reading a tableau from bottom to top we obtain a permutation whose descent set is as prescribed.
For a composition $c=c_1,\dots,c_k$ of $n$, the number of ribbon shaped standard tableaux equals
$$ \sum_d (-1)^{k-\ell} \binom{n}{d_1, d_2, \dots, d_\ell}, $$
where the sum is over all coarsenings of $c$ obtained by replacing consecutive summands by their sum, see [sec 14.4, 1]
Map
to composition
Description
The composition corresponding to a binary word.
Prepending $1$ to a binary word $w$, the $i$-th part of the composition equals $1$ plus the number of zeros after the $i$-th $1$ in $w$.
This map is not surjective, since the empty composition does not have a preimage.